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develop branch

InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top of Edward
and Tensorflow. InferPy’s API is strongly inspired by Keras and it has a focus on enabling flexible data processing,
easy-to-code probablistic modelling, scalable inference and robust model validation.

Use InferPy is you need a probabilistic programming language that:

• Allows easy and fast prototyping of hierarchical probabilistic models with a simple and user friendly API in-
spired by Keras.

• Defines probabilistic models with complex probabilistic constructs containing deep neural networks.

• Automatically creates computational efficient batched models without the need to deal with complex tensor
operations.

• Run seamlessly on CPU and GPU by relying on Tensorflow.

Quick Start 1
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CHAPTER 1

InferPy is to Edward what Keras is to Tensorflow

InferPy’s aim is to be to Edward what Keras is to Tensorflow. Edward is a general purpose probabilistic programing
language, like Tensorflow is a general computational engine. But this generality comes a at price. Edward’s API is
verbose and is based on distributions over Tensor objects, which are n-dimensional arrays with complex semantics
operations. Probability distributions over Tensors are powerful abstractions but it is not easy to operate with them.
InferPy’s API is no so general like Edward’s API but still covers a wide range of powerful and widely used probabilistic
models, which can contain complex probability constructs containing deep neural networks.

1.1 Getting Started: 30 seconds to InferPy

The core data structures of InferPy is a probabilistic model, defined as a set of random variables with a conditional
independence structure. Like in Edward, a random varible is an object parameterized by a set of tensors.

Let’s look at a simple (Bayesian) probabilistic component analysis model. Graphically the model can be defined as
follows,

Fig. 1: Bayesian PCA

We start defining the prior of the global parameters,
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import numpy as np
import inferpy as inf
from inferpy.models import Normal, InverseGamma, Dirichlet

# K defines the number of components.
K=10

# d defines the number of dimensions
d=20

#Prior for the principal components
with inf.replicate(size = K)

mu = Normal(loc = 0, scale = 1, dim = d)

InferPy supports the definition of plateau notation by using the construct with inf.replicate(size = K),
which replicates K times the random variables enclosed within this anotator. Every replicated variable is assumed to
be independent.

This with inf.replicate(size = N) construct is also useful when defining the model for the data:

# Number of observations
N = 1000

#data Model
with inf.replicate(size = N):

# Latent representation of the sample
w_n = Normal(loc = 0, scale = 1, dim = K)
# Observed sample. The dimensionality of mu is [K,d].
x = Normal(loc = mu0 + inf.matmul(w_n,mu), scale = 1.0, observed = true)

As commented above, the variable w_n and x_n are surrounded by a with statement to inidicate that the defined
random variables will be reapeatedly used in each data sample. In this case, every replicated variable is conditionally
idependent given the variables mu and sigma defined outside the with statement.

Once the random variables of the model are defined, the probablitic model itself can be created and compiled. The
probabilistic model defines a joint probability distribuiton over all these random variables.

from inferpy import ProbModel

# Define the model
pca = ProbModel(vars = [mu,w_n,x_n])

# Compile the model
pca.compile(infMethod = 'KLqp')

During the model compilation we specify different inference methods that will be used to learn the model.

from inferpy import ProbModel

# Define the model
pca = ProbModel(vars = [mu,w_n,x_n])

# Compile the model
pca.compile(infMethod = 'MCMC')

The inference method can be further configure. But, as in Keras, a core principle is to try make things reasonbly
simple, while allowing the user the full control if needed.

4 Chapter 1. InferPy is to Edward what Keras is to Tensorflow
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from keras.optimizers import SGD

# Define the model
pca = ProbModel(vars = [mu,w_n,x_n])

# Define the optimiser
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)

# Define the inference method
infklqp = inf.inference.KLqp(optimizer = sgd, loss="ELBO")

# Compile the model
pca.compile(infMethod = infklqp)

Every random variable object is equipped with methods such as log_prob() and sample(). Similarly, a proba-
bilistic model is also equipped with the same methods. Then, we can sample data from the model anbd compute the
log-likelihood of a data set:

# Sample data from the model
data = pca.sample(size = 100)

# Compute the log-likelihood of a data set
log_like = probmodel.log_prob(data)

Of course, you can fit your model with a given data set:

# Fit the model with the given data
pca.fit(data_training, epochs=10)

Update your probablistic model with new data using the Bayes’ rule:

# Update the model with the new data
pca.update(new_data)

Query the posterior over a given random varible:

# Compute the posterior of a given random variable
mu_post = pca.posterior(mu)

Evaluate your model according to a given metric:

# Evaluate the model on given test data set using some metric
log_like = pca.evaluate(test_data, metrics = ['log_likelihood'])

Or compute predicitons on new data

# Make predictions over a target var
latent_representation = pca.predict(test_data, targetvar = w_n)

1.2 Guiding Principles

• InferPy’s probability distribuions are mainly inherited from TensorFlow Distribuitons package. .. InferPy’s API
is fully compatible with tf.distributions’ API. The ‘shape’ argument was added as a simplifing option when
defining multidimensional distributions.

1.2. Guiding Principles 5
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• InferPy directly relies on top of Edward’s inference engine and includes all the inference algorithms included
in this package. As Edward’s inference engine relies on TensorFlow computing engine, InferPy also relies on it
too.

• InferPy seamsly process data contained in a numpy array, Tensorflow’s tensor, Tensorflow’s Dataset (tf.Data
API), Pandas’ DataFrame or Apache Spark’s DataFrame.

• InferPy also includes novel distributed statistical inference algorithms by combining Tensorflow and Apache
Spark computing engines.

1.3 Guide to Building Probabilistic Models

1.3.1 Getting Started with Probabilistic Models

InferPy focuses on hirearchical probabilistic models which usually are structured in two different layers:

• A prior model defining a joint distribution 𝑝(𝜃) over the global parameters of the model, 𝜃.

• A data or observation model defining a joint conditional distribution 𝑝(𝑥, ℎ|𝜃) over the observed quantities
𝑥 and the the local hidden variables ℎ governing the observation 𝑥. This data model should be specified in a
single-sample basis. There are many models of interest without local hidden variables, in that case we simply
specify the conditional 𝑝(𝑥|𝜃). More flexible ways of defining the data model can be found in ?.

A Bayesian PCA model has the following graphical structure,

Fig. 2: Bayesian PCA
The prior model is the variable 𝜇. The data model is the part of the model surrounded by the box indexed by N.

And this is how this Bayesian PCA model is denfined in InferPy:

import numpy as np
import inferpy as inf
from inferpy.models import Normal, InverseGamma, Dirichlet

import numpy as np
import inferpy as inf
from inferpy.models import Normal, InverseGamma, Dirichlet

# Define the probabilistic model
with inf.ProbModel() as pca:

# K defines the number of components.
K=10

#Prior for the principal components

(continues on next page)
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(continued from previous page)

with inf.replicate(size = K)
mu = Normal(loc = 0, scale = 1, dime = d)

# Number of observations
N = 1000

#data Model
with inf.replicate(size = N):

# Latent representation of the sample
w_n = Normal(loc = 0, scale = 1, dim = K)
# Observed sample. The dimensionality of mu is [K,d].
x = Normal(loc = inf.matmul(w_n,mu), scale = 1.0, observed = true)

#compile the probabilistic model
pca.compile()

The with inf.replicate(size = N) sintaxis is used to replicate the random variables contained within this
construct. It follows from the so-called plateau notation to define the data generation part of a probabilistic model.
Every replicated variable is conditionally idependent given the previous random variables (if any) defined outside
the with statement.

1.3.2 Random Variables

Following Edward’s approach, a random variable 𝑥 is an object parametrized by a tensor 𝜃 (i.e. a TensorFlow’s tensor
or numpy’s ndarray). The number of random variables in one object is determined by the dimensions of its parameters
(like in Edward) or by the ‘shape’ or ‘dim’ argument (inspired by PyMC3 and Keras):

# matrix of [1, 5] univariate standard normals
x = Normal(loc = 0, scale = 1, dim = 5)

# matrix of [1, 5] univariate standard normals
x = Normal(loc = np.zeros(5), scale = np.ones(5))

# matrix of [1,5] univariate standard normals
x = Normal (loc = 0, scale = 1, shape = [1,5])

The with inf.replicate(size = N) sintaxis can also be used to define multi-dimensional objects:

# matrix of [10,5] univariate standard normals
with inf.replicate(size = 10)

x = Normal (loc = 0, scale = 1, dim = 5)

Multivariate distributions can be defined similarly. Following Edward’s approach, the multivariate dimension is the
innermost (right-most) dimension of the parameters.

# Object with five K-dimensional multivariate normals, shape(x) = [5,K]
x = MultivariateNormal(loc = np.zeros([5,K]), scale = np.ones([5,K,K]))

# Object with five K-dimensional multivariate normals, shape(x) = [5,K]
x = MultivariateNormal (loc = np.zeros(K), scale = np.ones([K,K]), shape = [5,K])

The argument observed = true in the constructor of a random variable is used to indicate whether a variable is
observable or not.

1.3. Guide to Building Probabilistic Models 7
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1.3.3 Probabilistic Models

A probabilistic model defines a joint distribution over observable and non-observable variables, 𝑝(𝜃, 𝜇, 𝜎, 𝑧𝑛, 𝑥𝑛) for
the running example. The variables in the model are the ones defined using the with inf.ProbModel() as
pca: construct. Alternatively, we can also use a builder,

from inferpy import ProbModel
pca = ProbModel(vars = [mu,w_n,x_n])
pca.compile()

The model must be compiled before it can be used.

Like any random variable object, a probabilistic model is equipped with methods such as log_prob() and
sample(). Then, we can sample data from the model and compute the log-likelihood of a data set:

data = probmodel.sample(size = 1000)
log_like = probmodel.log_prob(data)

Folowing Edward’s approach, a random variable 𝑥 is associated to a tensor 𝑥* in the computational graph handled by
TensorFlow, where the computations takes place. This tensor 𝑥* contains the samples of the random variable 𝑥, i.e.
𝑥* ∼ 𝑝(𝑥|𝜃). In this way, random variables can be involved in expressive deterministic operations. For example, the
following piece of code corresponds to a zero inflated linear regression model

#Prior
w = Normal(0, 1, dim=d)
w0 = Normal(0, 1)
p = Beta(1,1)

#Likelihood model
with inf.replicate(size = 1000):

x = Normal(0,1000, dim=d, observed = true)
h = Binomial(p)
y0 = Normal(w0 + inf.matmul(x,w, transpose_b = true), 1),
y1 = Delta(0.0)
y = Deterministic(h*y0 + (1-h)*y1, observed = true)

probmodel = ProbModel(vars = [w,w0,p,x,h,y0,y1,y])
probmodel.compile()
data = probmodel.sample(size = 1000)
probmodel.fit(data)

A special case, it is the inclusion of deep neural networks within our probabilistic model to capture complex non-linear
dependencies between the random variables. This is extensively treated in the the Guide to Bayesian Deep Learning.

Finally, a probablistic model have the following methods:

• probmodel.summary(): prints a summary representation of the model.

• probmodel.get_config(): returns a dictionary containing the configuration of the model. The model
can be reinstantiated from its config via:

config = probmodel.get_config()
probmodel = ProbModel.from_config(config)

• model.to_json(): returns a representation of the model as a JSON string. Note that the representation does
not include the weights, only the architecture. You can reinstantiate the same model (with reinitialized weights)
from the JSON string via: ‘‘‘python from models import model_from_json

8 Chapter 1. InferPy is to Edward what Keras is to Tensorflow
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json_string = model.to_json()
model = model_from_json(json_string)

1.3.4 Supported Probability Distributions

1.4 Guide to Approximate Inference

1.4.1 Getting Started with Approximate Inference

The API defines the set of algorithms and methods used to perform inference in a probabilistic model 𝑝(𝑥, 𝑧, 𝜃)
(where 𝑥 are the observations, 𝑧 the local hidden variibles, and 𝜃 the global parameters of the model). More precisely,
the inference problem reduces to compute the posterior probability over the latent variables given a data sample
𝑝(𝑧, 𝜃|𝑥𝑡𝑟𝑎𝑖𝑛), because by looking at these posteriors we can uncover the hidden structure in the data. For the running
example, the posterior over the local hidden variables 𝑝(𝑤𝑛|𝑥𝑡𝑟𝑎𝑖𝑛) tell us the latent vector representation of the sample
𝑥𝑛, while the posterior over the global variables 𝑝(𝜇|𝑥𝑡𝑟𝑎𝑖𝑛) tells us which is the affine transformation between the
latent space and the observable space.

InferPy inherits Edward’s approach an consider approximate inference solutions,

𝑞(𝑧, 𝜃) ≈ 𝑝(𝑧, 𝜃|𝑥𝑡𝑟𝑎𝑖𝑛)

in which the task is to approximate the posterior 𝑝(𝑧, 𝜃|𝑥𝑡𝑟𝑎𝑖𝑛) using a family of distributions, 𝑞(𝑧, 𝜃;𝜆), indexed by a
parameter vector 𝜆.

A probabilistic model in InferPy should be compiled before we can access these posteriors,

pca = ProbModel(vars = [mu,w_n,x_n])
pca.compile(infMethod = 'KLqp')
pca.fit(x_train)
posterior_mu = pca.posterior(mu)

The compilation process allows to choose the inference algorithm through the infMethod argument. In the above
example we use 'Klqp'. Other inference algorithms include: 'NUTS', 'MCMC', 'KLpq', etc. Look at ? for a
detailed description of the available inference algorithms.

Following InferPy guiding principles, users can further configure the inference algorithm. First, they can define a
model ‘Q’ for approximating the posterior distribution,

pca = ProbModel(vars = [mu,w_n,x_n])

q_mu = inf.inference.Q.Normal(bind = mu, initializer='random_unifrom')
q_w_n = inf.inference.Q.Normal(bind = w_n, initializer='random_unifrom')

qmodel = QModel(vars = [q_mu,q_w_n])

pca.compile(infMethod = 'KLqp', Q = qmodel)
pca.fit(x_train)
posterior_mu = pca.posterior(mu)

In the ‘Q’ model we should include a q distribution for every non observed variable in the ‘P’ model. Otherwise, an
error will be raised during model compilation.

By default, the posterior q belongs to the same distribution family than p , but in the above example we show how we
can change that (e.g. we set the posterior over mu to obtain a point mass estimate instead of the Gaussian approxima-
tion used by default). We can also configure how these q’s are initialized using any of the Keras’s initializers.

1.4. Guide to Approximate Inference 9
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Inspired by Keras semantics, we can furhter configure the inference algorithm,

pca = ProbModel(vars = [mu,w_n,x_n])

q_mu = inf.inference.Q.PointMass(bind = mu, initializer='zeroes')
q_w_n = inf.inference.Q.Normal(bind = w_n, initializer='random_unifrom')

qmodel = QModel(vars = [q_mu,q_w_n])

sgd = keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True)
infkl_qp = inf.inference.KLqp(Q = qmodel, optimizer = sgd, loss="ELBO")
pca.compile(infMethod = infkl_qp)

pca.fit(x_train)
posterior_mu = pca.posterior(mu)

Have a look at Inference Zoo to explore other configuration options.

1.4.2 Compositional Inference

InferPy directly builds on top of Edward’s compositionality idea to design complex infererence algorithms.

pca = ProbModel(vars = [mu,w_n,x_n])

q_mu = inf.inference.Q.PointMass(bind = mu, initializer='zeroes')
q_w_n = inf.inference.Q.Normal(bind = w_n, initializer='random_unifrom')

qlocal = QModel(vars = [q_w_n])
qglobal = QModel(vars = [mu])

infkl_qp = inf.inference.KLqp(Q = qlocal, optimizer = 'sgd', innerIter = 10)
infMAP = inf.inference.MAP(Q = qglobal, optimizer = 'sgd')

sgd = keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True)
infkl_qp = inf.inference.KLqp(Q = qmodel, optimizer = sgd, loss="ELBO")
probmodel.compile(infMethod = [infkl_qp,infMAP])

pca.fit(x_train)
posterior_mu = pca.posterior(mu)

With the above sintaxis, we perform a variational EM algorithm, where the E step is repeated 10 times for every MAP
step.

More flexibility is also available by defining how each mini-batch is processed by the inference algorithm. The
following piece of code is equivalent to the above one,

pca = ProbModel(vars = [mu,w_n,x_n])

q_mu = inf.inference.Q.PointMass(bind = mu, initializer='zeroes')
q_w_n = inf.inference.Q.Normal(bind = w_n, initializer='random_unifrom')

qlocal = QModel(vars = [q_w_n])
qglobal = QModel(vars = [mu])

infkl_qp = inf.inference.KLqp(Q = qlocal, optimizer = 'sgd', innerIter = 10)
infMAP = inf.inference.MAP(Q = qglobal, optimizer = 'sgd')

(continues on next page)
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(continued from previous page)

emAlg = lambda (infMethod, dataBatch):
for _ in range(10)

infMethod[0].update(data = dataBatch)

infMethod[1].update(data = dataBatch)
return

pca.compile(infMethod = [infkl_qp,infMAP], ingAlg = emAlg)

pca.fit(x_train, EPOCHS = 10)
posterior_mu = pca.posterior(mu)

Have a look again at Inference Zoo to explore other complex compositional options.

1.4.3 Supported Inference Methods

1.5 Guide to Bayesian Deep Learning

InferPy inherits Edward’s approach for representing probabilistic models as (stochastic) computational graphs. As
describe above, a random variable 𝑥 is associated to a tensor 𝑥* in the computational graph handled by TensorFlow,
where the computations takes place. This tensor 𝑥* contains the samples of the random variable 𝑥, i.e. 𝑥* ∼ 𝑝(𝑥|𝜃).
In this way, random variables can be involved in complex deterministic operations containing deep neural networks,
math operations and another libraries compatible with Tensorflow (such as Keras).

Bayesian deep learning or deep probabilistic programming enbraces the idea of employing deep neural networks
within a probabilistic model in order to capture complex non-linear dependencies between variables.

InferPy’s API gives support to this powerful and flexible modelling framework. Let us start by showing how a varia-
tional autoencoder over binary data can be defined by mixing Keras and InferPy code.

from keras.models import Sequential
from keras.layers import Dense, Activation

M = 1000
dim_z = 10
dim_x = 100

#Define the decoder network
input_z = keras.layers.Input(input_dim = dim_z)
layer = keras.layers.Dense(256, activation = 'relu')(input_z)
output_x = keras.layers.Dense(dim_x)(layer)
decoder_nn = keras.models.Model(inputs = input, outputs = output_x)

#define the generative model
with inf.replicate(size = N)
z = Normal(0,1, dim = dim_z)
x = Bernoulli(logits = decoder_nn(z.value()), observed = true)

#define the encoder network
input_x = keras.layers.Input(input_dim = d_x)
layer = keras.layers.Dense(256, activation = 'relu')(input_x)
output_loc = keras.layers.Dense(dim_z)(layer)
output_scale = keras.layers.Dense(dim_z, activation = 'softplus')(layer)
encoder_loc = keras.models.Model(inputs = input, outputs = output_mu)

(continues on next page)
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(continued from previous page)

encoder_scale = keras.models.Model(inputs = input, outputs = output_scale)

#define the Q distribution
q_z = Normal(loc = encoder_loc(x.value()), scale = encoder_scale(x.value()))

#compile and fit the model with training data
probmodel.compile(infMethod = 'KLqp', Q = {z : q_z})
probmodel.fit(x_train)

#extract the hidden representation from a set of observations
hidden_encoding = probmodel.predict(x_pred, targetvar = z)

In this case, the parameters of the encoder and decoder neural networks are automatically managed by Keras. These
parameters are them treated as model parameters and not exposed to the user. In consequence, we can not be Bayesian
about them by defining specific prior distributions. In this example (?) , we show how we can avoid that by introducing
extra complexity in the code.

Other examples of probabilisitc models using deep neural networks are: - Bayesian Neural Networks - Mixture Density
Networks - . . .

We can also define a Keras model whose input is an observation and its output its the expected value of the posterior
over the hidden variables, 𝐸[𝑝(𝑧|𝑥)], by using the method toKeras, as a way to create more expressive models.

from keras.layers import Conv2D, MaxPooling2D, Flatten
from keras.layers import Input, LSTM, Embedding, Dense
from keras.models import Model, Sequential

#We define a Keras' model whose input is data sample 'x' and the output is the
→˓encoded vector E[p(z|x)]
variational_econder_keras = probmodel.toKeras(targetvar = z)

vision_model = Sequential()
vision_model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
vision_model.add(Conv2D(64, (3, 3), activation='relu'))
vision_model.add(MaxPooling2D((2, 2)))
vision_model.add(Flatten())

# Now let's get a tensor with the output of our vision model:
encoded_image = vision_model(input_x)

# Let's concatenate the vae vector and the convolutional image vector:
merged = keras.layers.concatenate([variational_econder_keras, encoded_image])

# And let's train a logistic regression over 100 categories on top:
output = Dense(100, activation='softmax')(merged)

# This is our final model:
classifier = Model(inputs=[input_x], outputs=output)

# The next stage would be training this model on actual data.

1.6 Guide to Model Validation

Model validation try to assess how faifhfully the inferered probabilistic model represents and explain the observed
data.

12 Chapter 1. InferPy is to Edward what Keras is to Tensorflow



InferPy Documentation, Release 1.0

The main tool for model validation consists on analyzing the posterior predictive distribution,

𝑝(𝑦𝑡𝑒𝑠𝑡, 𝑥𝑡𝑒𝑠𝑡|𝑦𝑡𝑟𝑎𝑖𝑛, 𝑥𝑡𝑟𝑎𝑖𝑛) =
∫︀
𝑝(𝑦𝑡𝑒𝑠𝑡, 𝑥𝑡𝑒𝑠𝑡|𝑧, 𝜃)𝑝(𝑧, 𝜃|𝑦𝑡𝑟𝑎𝑖𝑛, 𝑥𝑡𝑟𝑎𝑖𝑛)𝑑𝑧𝑑𝜃

This posterior predictive distribution can be used to measure how well the model fits an independent dataset using the
test marginal log-likelihood, ln 𝑝(𝑦𝑡𝑒𝑠𝑡, 𝑥𝑡𝑒𝑠𝑡|𝑦𝑡𝑟𝑎𝑖𝑛, 𝑥𝑡𝑟𝑎𝑖𝑛),

log_like = probmodel.evaluate(test_data, metrics = ['log_likelihood'])

In other cases, we may need to evalute the predictive capacity of the model with respect to some target variable 𝑦,

𝑝(𝑦𝑡𝑒𝑠𝑡|𝑥𝑡𝑒𝑠𝑡, 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑥𝑡𝑟𝑎𝑖𝑛) =
∫︀
𝑝(𝑦𝑡𝑒𝑠𝑡|𝑥𝑡𝑒𝑠𝑡, 𝑧, 𝜃)𝑝(𝑧, 𝜃|𝑦𝑡𝑟𝑎𝑖𝑛, 𝑥𝑡𝑟𝑎𝑖𝑛)𝑑𝑧𝑑𝜃

So the metrics can be computed with respect to this target variable by using the ‘targetvar’ argument,

log_like, accuracy, mse = probmodel.evaluate(test_data, targetvar = y, metrics = [
→˓'log_likelihood', 'accuracy', 'mse'])

So, the log-likelihood metric as well as the accuracy and the mean square error metric are computed by using the
predictive posterior 𝑝(𝑦𝑡𝑒𝑠𝑡|𝑥𝑡𝑒𝑠𝑡, 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑥𝑡𝑟𝑎𝑖𝑛).

Custom evaluation metrics can also be defined,

def mean_absolute_error(posterior, observations, weights=None):
predictions = tf.map_fn(lambda x : x.getMean(), posterior)
return tf.metrics.mean_absolute_error(observations, predictions, weights)

mse, mae = probmodel.evaluate(test_data, targetvar = y, metrics = ['mse', mean_
→˓absolute_error])

1.7 Guide to Data Handling

import numpy as np
import inferpy as inf
from inferpy.models import Normal, InverseGamma, Dirichlet

#We first define the probabilistic model
with inf.ProbModel() as mixture_model:

# K defines the number of components.
K=10
#Prior for the means of the Gaussians
mu = Normal(loc = 0, scale = 1, shape=[K,d])
#Prior for the precision of the Gaussians
invgamma = InverseGamma(concentration = 1, rate = 1, shape=[K,d])
#Prior for the mixing proportions
theta = Dirichlet(np.ones(K))

# Number of observations
N = 1000
#data Model
with inf.replicate(size = N, batch_size = 100)

# Sample the component indicator of the mixture. This is a latent variable
→˓that can not be observed

z_n = Multinomial(probs = theta)
# Sample the observed value from the Gaussian of the selected component.
x_n = Normal(loc = tf.gather(mu,z_n), scale = tf.gather(invgamma,z_n),

→˓observed = true)

(continues on next page)
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(continued from previous page)

#compile the probabilistic model
mixture_model.compile(infAlg = 'klqp')

#fit the model with data
mixture_model.fit(data)

1.8 Probabilistic Model Zoo

1.8.1 Bayesian Linear Regression

# Shape = [1,d]
w = Normal(0, 1, dim=d)
# Shape = [1,1]
w0 = Normal(0, 1)

with inf.replicate(size = N):
# Shape = [N,d]
x = Normal(0,1, dim=d, observed = true)
# Shape = [1,1] + [N,d]@[d,1] = [1,1] + [N,1] = [N,1] (by broadcasting)
y = Normal(w0 + tf.matmul(x,w, transpose_b = true ), 1, observed = true)

model = ProbModel(vars = [w0,w,x,y])

data = model.sample(size=N)

log_prob = model.log_prob(sample)

model.compile(infMethod = 'KLqp')

model.fit(data)

print(probmodel.posterior([w0,w]))

1.8.2 Zero Inflated Linear Regression

# Shape = [1,d]
w = Normal(0, 1, dim=d)
# Shape = [1,1]
w0 = Normal(0, 1)

# Shape = [1,1]
p = Beta(1,1)

with inf.replicate(size = N):
# Shape [N,d]
x = Normal(0,1000, dim=d, observed = true)
# Shape [N,1]
h = Binomial(p)

(continues on next page)
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(continued from previous page)

# Shape [1,1] + [N,d]@[d,1] = [1,1] + [N,1] = [N,1] (by broadcasting)
y0 = Normal(w0 + inf.matmul(x,w, transpose_b = true ), 1),
# Shape [N,1]
y1 = Delta(0.0)
# Shape [N,1]*[N,1] + [N,1]*[N,1] = [N,1]
y = Deterministic(h*y0 + (1-h)*y1, observed = true)

model = ProbModel(vars = [w0,w,p,x,h,y0,y1,y])

data = model.sample(size=N)

log_prob = model.log_prob(sample)

model.compile(infMethod = 'KLqp')

model.fit(data)

print(probmodel.posterior([w0,w]))

1.8.3 Bayesian Logistic Regression

# Shape = [1,d]
w = Normal(0, 1, dim=d)
# Shape = [1,1]
w0 = Normal(0, 1)

with inf.replicate(size = N):
# Shape = [N,d]
x = Normal(0,1, dim=d, observed = true)
# Shape = [1,1] + [N,d]@[d,1] = [1,1] + [N,1] = [N,1] (by broadcasting)
y = Binomial(logits = w0 + tf.matmul(x,w, transpose_b = true), observed = true)

model = ProbModel(vars = [w0,w,x,y])

data = model.sample(size=N)

log_prob = model.log_prob(sample)

model.compile(infMethod = 'KLqp')

model.fit(data)

print(probmodel.posterior([w0,w]))

1.8.4 Bayesian Multinomial Logistic Regression

# Number of classes
K=10

(continues on next page)
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(continued from previous page)

with inf.replicate(size = K):
# Shape = [K,d]
w = Normal(0, 1, dim=d)
# Shape = [K,1]
w0 = Normal(0, 1])

with inf.replicate(size = N):
# Shape = [N,d]
x = Normal(0,1, dim=d, observed = true)
# Shape = [1,K] + [N,d]@[d,K] = [1,K] + [N,K] = [N,K] (by broadcasting)
y = Multinmial(logits = tf.transpose(w0) + tf.matmul(x,w, transpose_b = true),

→˓observed = true)

model = ProbModel(vars = [w0,w,x,y])

data = model.sample(size=N)

log_prob = model.log_prob(sample)

model.compile(infMethod = 'KLqp')

model.fit(data)

print(probmodel.posterior([w0,w]))

1.8.5 Mixture of Gaussians

Fig. 3: Mixture of Gaussians
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Version A

d=3
K=10
N=1000
#Prior
with inf.replicate(size = K):

#Shape [K,d]
mu = Normal(loc = 0, scale =1, dim=d)
#Shape [K,d]
sigma = InverseGamma(concentration = 1, rate = 1, dim=d)

# Shape [1,K]
p = Dirichlet(np.ones(K))

#Data Model
with inf.replicate(size = N):

# Shape [N,1]
z_n = Multinomial(probs = p)
# Shape [N,d]
x_n = Normal(loc = tf.gather(mu,z_n), scale = tf.gather(sigma,z_n), observed =

→˓true)

model = ProbModel(vars = [p,mu,sigma,z_n, x_n])

data = model.sample(size=N)

log_prob = model.log_prob(sample)

model.compile(infMethod = 'KLqp')

model.fit(data)

print(probmodel.posterior([mu,sigma]))

Version B

d=3
K=10
N=1000
#Prior
mu = Normal(loc = 0, scale =1, shape = [K,d])
sigma = InverseGamma(concentration = 1, rate = 1, shape = [K,d])

# Shape [1,K]
p = Dirichlet(np.ones(K))

#Data Model
z_n = Multinomial(probs = p, shape = [N,1])
# Shape [N,d]
x_n = Normal(loc = tf.gather(mu,z_n), scale = tf.gather(sigma,z_n), observed = true)

probmodel = ProbModel(vars = [p,mu,sigma,z_n, x_n])

data = probmodel.sample(size=N)

log_prob = probmodel.log_prob(sample)

(continues on next page)
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(continued from previous page)

probmodel.compile(infMethod = 'KLqp')

probmodel.fit(data)

print(probmodel.posterior([mu,sigma]))

1.8.6 Linear Factor Model (PCA)

Fig. 4: Linear Factor Model

K = 5
d = 10
N=200

with inf.replicate(size = K)
# Shape [K,d]
mu = Normal(0,1, dim = d)

# Shape [1,d]
mu0 = Normal(0,1, dim = d)

sigma = 1.0

with inf.replicate(size = N):
# Shape [N,K]
w_n = Normal(0,1, dim = K)
# inf.matmul(w_n,mu) has shape [N,K] x [K,d] = [N,d] by broadcasting mu.
# Shape [1,d] + [N,d] = [N,d] by broadcasting mu0
x = Normal(mu0 + inf.matmul(w,mu), sigma, observed = true)

probmodel = ProbModel([mu,mu0,w_n,x])

(continues on next page)
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(continued from previous page)

data = probmodel.sample(size=N)

log_prob = probmodel.log_prob(sample)

probmodel.compile(infMethod = 'KLqp')

probmodel.fit(data)

print(probmodel.posterior([mu,mu0]))

1.8.7 PCA with ARD Prior (PCA)

K = 5
d = 10
N=200

with inf.replicate(size = K)
# Shape [K,d]
alpha = InverseGamma(1,1, dim = d)
# Shape [K,d]
mu = Normal(0,1, dim = d)

# Shape [1,d]
mu0 = Normal(0,1, dim = d)

# Shape [1,1]
sigma = InverseGamma(1,1, dim = 1)

with inf.replicate(size = N):
# Shape [N,K]
w_n = Normal(0,1, dim = K)
# inf.matmul(w_n,mu) has shape [N,K] x [K,d] = [N,d] by broadcasting mu.
# Shape [1,d] + [N,d] = [N,d] by broadcasting mu0
x = Normal(mu0 + inf.matmul(w,mu), sigma, observed = true)

probmodel = ProbModel([alpha,mu,mu0,sigma,w_n,x])

data = probmodel.sample(size=N)

log_prob = probmodel.log_prob(sample)

probmodel.compile(infMethod = 'KLqp')

probmodel.fit(data)

print(probmodel.posterior([alpha,mu,mu0,sigma]))
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Fig. 5: Mixed Membership Model

1.8.8 Mixed Membership Model

K = 5
d = 10
N=200
M=50

with inf.replicate(size = K)
#Shape = [K,d]
mu = Normal(0,1, dim = d)
#Shape = [K,d]
sigma = InverseGamma(1,1, dim = d)

with inf.replicate(size = N):
#Shape = [N,K]
theta_n = Dirichlet(np.ones(K))
with inf.replicate(size = M):

# Shape [N*M,1]
z_mn = Multinomial(theta_n)
# Shape [N*M,d]
x = Normal(tf.gather(mu,z_mn), tf.gather(sigma,z_mn), observed = true)

probmodel = ProbModel([mu,sigma,theta_n,z_mn,x])

data = probmodel.sample(size=N)

log_prob = probmodel.log_prob(sample)

probmodel.compile(infMethod = 'KLqp')

probmodel.fit(data)

print(probmodel.posterior([mu,sigma]))
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1.8.9 Latent Dirichlet Allocation

K = 5 # Number of topics
d = 1000 # Size of vocabulary
N=200 # Number of documents in the corpus
M=50 # Number of words in each document

with inf.replicate(size = K)
#Shape = [K,d]
dir = Dirichlet(np.ones(d)*0.1)

with inf.replicate(size = N):
#Shape = [N,K]
theta_n = Dirichlet(np.ones(K))
with inf.replicate(size = M):

# Shape [N*M,1]
z_mn = Multinomial(theta_n)
# Shape [N*M,d]
x = Multinomial(tf.gather(dir,z_mn), tf.gather(dir,z_mn), observed = true)

probmodel = ProbModel([dir,theta_n,z_mn,x])

data = probmodel.sample(size=N)

log_prob = probmodel.log_prob(sample)

probmodel.compile(infMethod = 'KLqp')

probmodel.fit(data)

print(probmodel.posterior(dir))

1.8.10 Matrix Factorization

Version A

N=200
M=50
K=5

with inf.replicate(name = 'A', size = M)
# Shape [M,K]
gamma_m = Normal(0,1, dim = K)

with inf.replicate(name = 'B', size = N):
# Shape [N,K]
w_n = Normal(0,1, dim = K)

with inf.replicate(compound = ['A', 'B']):
# x_mn has shape [N,K] x [K,M] = [N,M]

(continues on next page)
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Fig. 6: Matrix Factorization Model

(continued from previous page)

x_nm = Normal(tf.matmul(w_n,gamma_m, transpose_b = true), 1, observed = true)

probmodel = ProbModel([w_n,gamma_m,x_nm])

data = probmodel.sample(size=N)

log_prob = probmodel.log_prob(sample)

probmodel.compile(infMethod = 'KLqp')

probmodel.fit(data)

print(probmodel.posterior([w_n,gamma_m]))

Version B

N=200
M=50
K=5

# Shape [M,K]
gamma_m = Normal(0,1, shape = [M,K])

# Shape [N,K]
w_n = Normal(0,1, shape = [N,K])

# x_mn has shape [N,K] x [K,M] = [N,M]
x_nm = Normal(tf.matmul(w_n,gamma_m, transpose_b = true), 1, observed = true)

probmodel = ProbModel([w_n,gamma_m,x_nm])

data = probmodel.sample(size=N)

(continues on next page)
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(continued from previous page)

log_prob = probmodel.log_prob(sample)

probmodel.compile(infMethod = 'KLqp')

probmodel.fit(data)

print(probmodel.posterior([w_n,gamma_m]))

1.8.11 Linear Mixed Effect Model

N = 1000 # number of observations
n_s = 100 # number of students
n_d = 10 # number of instructor
n_dept = 10 # number of departments

eta_s = Normal(0,1, dim = n_s)
eta_d = Normal(0,1, dim = n_d)
eta_dept = Normal(0,1, dim = n_dept)
mu = Normal(0,1)
mu_service = Normal(0,1)

with inf.replicate( size = N):
student = Multinomial(probs = np.rep(1,n_s)/n_s, observed = true)
instructor = Multinomial(probs = np.rep(1,n_d)/n_d, observed = true)
department = Multinomial(probs = np.rep(1,n_dept)/n_dept, observed = true)
service = Binomial (probs = 0.5, observed = true)
y = Normal (tf.gather(eta_s,student)

+ bs.gather(eta_d,instructor)
+ bs.gather(eta_dept,department)
+ mu + mu_service*service, 1, observed = true)

#vars = 'all' automatically add all previously created random variables
probmodel = ProbModel(vars = 'all')

data = probmodel.sample(size=N)

log_prob = probmodel.log_prob(sample)

probmodel.compile(infMethod = 'KLqp')

probmodel.fit(data)

#When no argument is given to posterior, return all non-replicated random varibles
print(probmodel.posterior())

1.8.12 Bayesian Neural Network Classifier
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d = 10 # number of features
N = 1000 # number of observations

def neural_network(x):
h = tf.tanh(tf.matmul(x, W_0) + b_0)
h = tf.tanh(tf.matmul(h, W_1) + b_1)
h = tf.matmul(h, W_2) + b_2
return tf.reshape(h, [-1])

W_0 = Normal(0,1, shape = [d,10])
W_1 = Normal(0,1, shape = [10,10])
W_2 = Normal(0,1, shape = [10,1])

b_0 = Normal(0,1, shape = [1,10])
b_1 = Normal(0,1, shape = [1,10])
b_2 = Normal(0,1, shape = [1,1])

with inf.replicate(size = N):
x = Normal(0,1, dim = d, observed = true)
y = Bernoulli(logits=neural_network(x), observed = true)

#vars = 'all' automatically add all previously created random variables
probmodel = ProbModel(vars = 'all')

data = probmodel.sample(size=N)

log_prob = probmodel.log_prob(sample)

probmodel.compile(infMethod = 'KLqp')

probmodel.fit(data)

#When no argument is given to posterior, return all non-replicated random varibles
print(probmodel.posterior())

1.8.13 Variational Autoencoder

from keras.models import Sequential
from keras.layers import Dense, Activation

M = 1000
dim_z = 10
dim_x = 100

#Define the decoder network
input_z = keras.layers.Input(input_dim = dim_z)
layer = keras.layers.Dense(256, activation = 'relu')(input_z)
output_x = keras.layers.Dense(dim_x)(layer)
decoder_nn = keras.models.Model(inputs = input, outputs = output_x)

#define the generative model
with inf.replicate(size = N)
z = Normal(0,1, dim = dim_z)

(continues on next page)
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(continued from previous page)

x = Bernoulli(logits = decoder_nn(z.value()), observed = true)

#define the encoder network
input_x = keras.layers.Input(input_dim = d_x)
layer = keras.layers.Dense(256, activation = 'relu')(input_x)
output_loc = keras.layers.Dense(dim_z)(layer)
output_scale = keras.layers.Dense(dim_z, activation = 'softplus')(layer)
encoder_loc = keras.models.Model(inputs = input, outputs = output_mu)
encoder_scale = keras.models.Model(inputs = input, outputs = output_scale)

#define the Q distribution
q_z = Normal(loc = encoder_loc(x.value()), scale = encoder_scale(x.value()))

#compile and fit the model with training data
probmodel.compile(infMethod = 'KLqp', Q = {z : q_z})
probmodel.fit(x_train)

#extract the hidden representation from a set of observations
hidden_encoding = probmodel.predict(x_pred, targetvar = z)
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1.9 inferpy package

1.9.1 Subpackages

inferpy.inferences package

Module contents

inferpy.models package

Submodules

inferpy.models.normal module

inferpy.models.random_variable module

Module contents

inferpy.util package

Submodules

inferpy.util.error module

inferpy.util.ops module

inferpy.util.runtime module

inferpy.util.wrappers module

Module contents

1.9.2 Submodules

1.9.3 inferpy.prob_model module

1.9.4 inferpy.replicate module

1.9.5 inferpy.version module

1.9.6 Module contents
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