InferPy Documentation
Release 1.0

Rafael Cabanas

Sep 17,2018






Quick Start

Getting Started: 3
Guiding Principles 7
Guide to Building Probabilistic Models 9
Guide to Approximate Inference 19
Guide to Model Validation 23
Guide to Data Handling 25
Probabilistic Model Zoo 27
Inferpy vs Edward 35

inferpy package 39







InferPy Documentation, Release 1.0

InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top of Tensorflow.
InferPy’s API is strongly inspired by Keras and it has a focus on enabling flexible data processing, easy-to-code
probablistic modeling, scalable inference and robust model validation.

Use InferPy if you need a probabilistic programming language that:

* Allows easy and fast prototyping of hierarchical probabilistic models with a simple and user friendly API in-
spired by Keras.

* Automatically creates computational efficient batched models without the need to deal with complex tensor
operations.

¢ Run seamlessly on CPU and GPU by relying on Tensorflow, without having to learn how to use Tensorflow.

Quick Start 1



InferPy Documentation, Release 1.0

2 Quick Start



CHAPTER 1

Getting Started:

1.1 Installation

Install InferPy from PyPI:

’$ pip install inferpy

1.2 30 seconds to InferPy

The core data structures of InferPy is a probabilistic model, defined as a set of random variables with a conditional
dependency structure. A random varible is an object parameterized by a set of Numpy’s arrays.

Let’s look at a simple (Bayesian) probabilistic component analysis model. Graphically the model can be defined as

follows,
e ZTlNNK(OJI)
@ Xp~ Ng(z,w, I
N n d( n )

@ wi~ Ny (0,1)
K

Fig. 1: Bayesian PCA




InferPy Documentation, Release 1.0

We start defining the prior of the global parameters,

import inferpy as inf
from inferpy.models import Normal

# K defines the number of components.
K=10

# d defines the number of dimensions
d=20

#Prior for the principal components
with inf.replicate(size = K):
w = Normal (loc = 0, scale = 1, dim = d) # x.shape = [K,d]

InferPy supports the definition of plateau notation by using the construct with inf.replicate(size = K),
which replicates K times the random variables enclosed within this anotator. Every replicated variable is assumed to
be independent.

Thiswith inf.replicate(size = N) construct is also useful when defining the model for the data:

# Number of observations
N = 1000

# define the generative model
with inf.replicate(size=N):
z = Normal (0, 1, dim=K) # z.shape = [N,K]
x = Normal (inf.matmul (z,w), 1.0, observed=True, dim=d) # x.shape = [N,d]

As commented above, the variables are surrounded by a with statement to inidicate that the defined random variables
will be reapeatedly used in each data sample. In this case, every replicated variable is conditionally idependent given
the variable w defined above.

Once the random variables of the model are defined, the probablitic model itself can be created and compiled. The
probabilistic model defines a joint probability distribuiton over all these random variables.

from inferpy import ProbModel

# Define the model
pca = ProbModel (varlist = [w,z,x])

# Compile the model
pca.compile (infMethod = 'KLgp')

During the model compilation we specify different inference methods that will be used to learn the model.

from inferpy import ProbModel

# Define the model
pca = ProbModel (varlist = [w,z,x])

# Compile the model
pca.compile (infMethod = 'Variational')

The inference method can be further configure. But, as in Keras, a core principle is to try make things reasonbly
simple, while allowing the user the full control if needed.

4 Chapter 1. Getting Started:




InferPy Documentation, Release 1.0

Every random variable object is equipped with methods such as 1og_prob () and sample (). Similarly, a proba-
bilistic model is also equipped with the same methods. Then, we can sample data from the model anbd compute the
log-likelihood of a data set:

# Sample data from the model
data = pca.sample(size = 100)

# Compute the log-likelihood of a data set
log_like = pca.log_prob(data)

Of course, you can fit your model with a given data set:

# compile and fit the model with training data
pca.compile ()
pca.fit (data)

#extract the hidden representation from a set of observations
hidden_encoding = pca.posterior (z)

1.2. 30 seconds to InferPy 5




InferPy Documentation, Release 1.0

6 Chapter 1. Getting Started:



CHAPTER 2

Guiding Principles

2.1

Features

The main features of InferPy are listed below.

2.2

The models that can be defined in Inferpy are those that can be defined using Edward, whose probability dis-
tribuions are mainly inherited from TensorFlow Distribuitons package.

Edward’s drawback is that for the model definition, the user has to manage complex multidimensional arrays
called tensors. By contrast, in InferPy all the parameters in a model can be defined using the standard Python
types (compatibility with Numpy is available as well).

InferPy directly relies on top of Edward’s inference engine and includes all the inference algorithms included
in this package. As Edward’s inference engine relies on TensorFlow computing engine, InferPy also relies on it
too.

InferPy seamlessly process data contained in a numpy array, Tensorflow’s tensor, Tensorflow’s Dataset (tf.Data
API), Pandas’ DataFrame or Apache Spark’s DataFrame.

InferPy also includes novel distributed statistical inference algorithms by combining Tensorflow computing
engines.

Architecture

Given the previous considerations, we might summarize the InferPy architecture as follows.

Note that InferPy can be seen as an upper layer for working with probabilistic distributions defined over tensors.
Most of the interaction is done with Edward: the definitions of the distributions, the inference. However, InferPy also
interacts directly with Tensorflow in some operations that are hidden to the user, e.g. the manipulation of the tensors
representing the parameters of the distributions.

An additional advantage of using Edward and Tensorflow as inference engine, is that all the paralelisation details are
hidden to the user. Moreover, the same code will run either in CPUs or GPUs.




InferPy Documentation, Release 1.0

e N
‘ Edward ::EP;;:M
\_
! !
f N\
¥ TensorFlow
\ J

For some less important task, InferPy might also interact with other third-party software. For example, reading data is
done with Pandas or the visualization tasks are leveraged to MatPlotLib.

8 Chapter 2. Guiding Principles



CHAPTER 3

Guide to Building Probabilistic Models

3.1 Getting Started with Probabilistic Models

InferPy focuses on hirearchical probabilistic models structured in two different layers:

* A prior model defining a joint distribution p(w) over the global parameters of the model. w can be a single
random variable or a bunch of random variables with any given dependency structure.

* A data or observation model defining a joint conditional distribution p(x, z|w) over the observed quantities x
and the the local hidden variables z governing the observation x. This data model is specified in a single-sample
basis. There are many models of interest without local hidden variables, in that case, we simply specify the
conditional p(x|w). Similarly, either x or z can be a single random variable or a bunch of random variables
with any given dependency structure.

For example, a Bayesian PCA model has the following graphical structure,

O
@ Xn~ Na(znw, 1)

N

@ wi~ Ny (0,1)
K

Fig. 1: Bayesian PCA

The prior model are the variables wy,. The data model is the part of the model surrounded by the box indexed by N.




InferPy Documentation, Release 1.0

And this is how this Bayesian PCA model is denfined in InferPy:

import edward as ed
import inferpy as inf
from inferpy.models import Normal

K, d, N = 5, 10, 200

# model definition
with inf.ProbModel () as m:
#define the weights
with inf.replicate(size=K):
w = Normal (0, 1, dim=d)

# define the generative model
with inf.replicate(size=N):
z = Normal (0, 1, dim=K)
x = Normal (inf.matmul(z,w), 1.0, observed=True, dim=d)

m.compile ()

The with inf.replicate(size = N) sintaxis is used to replicate the random variables contained within this
construct. It follows from the so-called plateau notation to define the data generation part of a probabilistic model.
Every replicated variable is conditionally idependent given the previous random variables (if any) defined outside
the with statement.

3.2 Random Variables

Following Edward’s approach, a random variable z is an object parametrized by a tensor 6 (i.e. a TensorFlow’s tensor
or numpy’s ndarray). The number of random variables in one object is determined by the dimensions of its parameters
(like in Edward) or by the ‘dim’ argument (inspired by PyMC3 and Keras):

import inferpy as inf
import tensorflow as tf
import numpy as np

# different ways of declaring 1 batch of 5 Normal distributions

x = inf.models.Normal (loc = 0, scale=1, dim=5) # x.shape = [5]
x = inf.models.Normal (loc = [0, O, 0, 0, 0], scale=1) # x.shape = [5]
x = inf.models.Normal (loc = np.zeros(5), scale=1) # x.shape = [5]
x = inf.models.Normal (loc = 0, scale=tf.ones(5)) # x.shape = [5]

Thewith inf.replicate(size = N) sintaxis can also be used to define multi-dimensional objects:

with inf.replicate(size=10):
x = inf.models.Normal (loc=0, scale=1, dim=5) # x.shape = [10,5]

Following Edward’s approach, the multivariate dimension is the innermost (right-most) dimension of the parameters.

Note that indexing is supported:

10 Chapter 3. Guide to Building Probabilistic Models




InferPy Documentation, Release 1.0

y = x[7,4] # y.shape = [1]

y2 = x[7] # y2.shape = [5]
y3 = x[7,:] # y2.shape = [5]
vd = x[:,4] # y4.shape = [10]

Moreover, we may use indexation for defining new variables whose indexes may be other (discrete) variables:

z = inf.models.Categorical (logits = np.zeros(5))
yz = inf.models.Normal (loc=x[0,z], scale=1) # vz.shape = [1]

Any random variable in InferPy contain the following (optional) input parameters in the constructor:

* validate_args : Python boolean indicating that possibly expensive checks with the input parameters are
enabled. By default, it is set to False.

e allow_nan_stats : When True, the value “NaN” is used to indicate the result is undefined. Otherwise an
exception is raised. Its default value is True.

e name: Python string with the name of the underlying Tensor object.

* observed: Python boolean which is used to indicate whether a variable is observable or not . The default
value is False

¢ dim: dimension of the variable. The default value is None

Inferpy supports a wide range of probability distributions. Details of the specific arguments for each supported distri-
butions are specified in the following sections.

3.3 Probabilistic Models

A probabilistic model defines a joint distribution over observable and non-observable variables, p(w, z,x) for the
running example. The variables in the model are the ones defined using the with inf.ProbModel () as pca:
construct. Alternatively, we can also use a builder,

m = inf.ProbModel (varlist=I[w, z,x])
m.compile ()

The model must be compiled before it can be used.

Like any random variable object, a probabilistic model is equipped with methods such as sample (), log_prob ()
and sum_log_prob (). Then, we can sample data from the model and compute the log-likelihood of a data set:

data = m.sample (1000)
log_like = m.log_prob (data)
sum_log_like = m.sum_log_prob (data)

Random variables can be involved in expressive deterministic operations. Dependecies between variables are modelled
by setting a given variable as a parameter of another variable. For example:

with inf.ProbModel () as m:
theta = inf.models.Beta(0.5,0.5)
z = 1inf.models.Categorical (probs=[theta, 1l-thetal], name="z")

(continues on next page)

3.3. Probabilistic Models 11




InferPy Documentation, Release 1.0

(continued from previous page)

m.sample ()

Moreover, we might consider using the function inferpy . case as the parameter of other random variables:

# Categorical variable depending on another categorical variable

with inf.ProbModel () as m2:

y = inf.models.Categorical (probs=[0.4,0.6], name="y")
x = inf.models.Categorical (probs=inf.case({y.equal(0): [0.0, 1.0],
y.equal(l): [1.0, 0.0] }), name="x")

m2.sample ()

# Categorical variable depending on a Normal distributed variable

with inf.ProbModel () as m3:
a = inf.models.Normal (0,1, name="a")
b inf.models.Categorical (probs=inf.case({a>0: [0.0, 1.0],
a<=0: [1.0, 0.01}), name="b")

m3.sample ()

# Normal distributed variable depending on a Categorical variable

with inf.ProbModel () as m4:

d = inf.models.Categorical (probs=[0.4,0.6], name="d")
c = inf.models.Normal (loc=inf.case({d.equal(0): 0.,
d.equal(l): 100.}), scale=1., name="c")

m4 .sample ()

Note that we might use the case function inside the replicate construct. The result will be a multi-batch random
variable having the same distribution for each batch. When obtaining a sample from the model, each sample of a given
batch in x is independent of the rest.

with inf.ProbModel () as m:

y = inf.models.Categorical (probs=[0.4,0.6], name="y")
with inf.replicate(size=10):
x = inf.models.Categorical (probs=inf.case({y.equal(0): [0.5, 0.57],
y.equal(l): [1.0, 0.0] }), name="x
—")
m.sample ()

We can also use the functions inferpy.case_states or inferpy.gather for defining the same model.

with inf.ProbModel () as m:
y = inf.models.Categorical (probs=[0.4,0.6], name="y")
X inf.models.Categorical (probs=inf.case_states(y, {0: [0.0, 1.0],
1: [1.0, 0.0] }), name="x")

m.sample ()

with inf.ProbModel () as m:
y = inf.models.Categorical (probs=[0.4,0.6], name="y")
with inf.replicate(size=10):
x = inf.models.Categorical (probs=inf.gather ([[0.5, 0.5], [1.0, 0.011, Vv),.
—name="x")

(continues on next page)

12 Chapter 3. Guide to Building Probabilistic Models




InferPy Documentation, Release 1.0

(continued from previous page)

m.sample ()

We can use the function inferpy.case_states with a list of variables (or multidimensional variables):

y = 1inf.models.Categorical (probs=[0.5,0.5], name="y", dim=2)
p = inf.case_states(y, {(0,0): [1.0, 0.0, 0.0, 0.0], (0,1): [0.0, 1.0, 0.0, 0.0],
(, 0): (0.0, 0.0, 1.0, 0.01, ¢(1,1): [0.0, 0.0, 0.0, 1.07} )

with inf.replicate(size=10):

x = inf.models.Categorical (probs=p, name="x"
#HH##
y = 1inf.models.Categorical (probs=[0.5,0.5], name="y", dim=1)
z = inf.models.Categorical (probs=[0.5,0.5], name="z", dim=1)
p = inf.case_states((y,z), {(0,0): (1.0, 0.0, 0.0, 0.0], (O,1): [0.0, 1.0, 0.0, 0.07,
(1, o0): (0.0, 0.0, 1.0, 0.01, (1,1): [0.0, 0.0, 0.0, 1.01}

o

)

with inf.replicate(size=10):

x = inf.models.Categorical (probs=p, name="x")
#H##
p = inf.case_states(ly,z], {(0,0): [1.0, 0.0, 0.0, 0.01, (O,1): [0.0, 1.0, 0.0, 0.01,
(x, 0): 0.0, 0.0, 1.0, 0.01, (1,1): [0.0, 0.0, 0.0, 1.01}
<
)

with inf.replicate(size=10):
x = inf.models.Categorical (probs=p, name="x")

3.4 Supported Probability Distributions

Supported probability distributions are located in the package inferpy.models. All of them have inferpy.
models.RandomVariable as superclass. A list with all the supported distributions can be obtained as as follows.

>>> inf.models.ALLOWED_VARS
['Bernoulli', 'Beta', 'Categorical', 'Deterministic', 'Dirichlet', 'Exponential',
—'Gamma', 'InverseGamma', 'Laplace', 'Multinomial', 'Normal', 'Poisson', 'Uniform']

3.4.1 Bernoulli

Binary distribution which takes the value 1 with probability p and the value with 1 — p. Its probability mass function
is

N P ife=1
p(x,p)—{ 1—p ifz=0

3.4. Supported Probability Distributions 13




InferPy Documentation, Release 1.0

An example of definition in InferPy of a random variable following a Bernoulli distribution is shown below. Note that
the input parameter probs corresponds to p in the previous equation.

x = inf.models.Bernoulli (probs=0.5)
# or
x = inf.models.Bernoulli (logits=0)

This distribution can be initialized by indicating the logit function of the probability, i.e., logit(p) = log(%).

3.4.2 Beta

Continuous distribution defined in the interval [0, 1] and parametrized by two positive shape parameters, denoted «
and f.

1,0471(1 _ x)ﬁfl

p(z;a, ) = Bla.d)

where B is the beta function
1
B(a, B) :/ t (1 — )P tat
0

The definition of a random variable following a Beta distribution is done as follows.

x = inf.models.Beta (concentration0=0.5, concentrationl=0.5)
# or simply:

x = inf.models.Beta(0.5,0.5)

Note that the input parameters concentration0O and concentrationl correspond to the shape parameters
and (3 respectively.

3.4.3 Categorical

Discrete probability distribution that can take k possible states or categories. The probability of each state is separately
defined:

p(z;p) = pi

where p = (p1, p2, - - ., Px) is a k-dimensional vector with the probability associated to each possible state.

The definition of a random variable following a Categorical distribution is done as follows.

x = inf.models.Categorical (probs=[0.5,0.5])

x = inf.models.Categorical (logits=[0,017)

14 Chapter 3. Guide to Building Probabilistic Models




InferPy Documentation, Release 1.0

3.4.4 Deterministic

The deterministic distribution is a probability distribution in a space (continuous or discrete) that always takes the
same value k. Its probability density (or mass) function can be defined as follows.

. o 1 ifx:kzo
W’kO)_{ 0 ifz £ ko

The definition of a random variable following a Beta distribution is done as follows:

x = inf.models.Deterministic (loc=5)

where the input parameter 1oc corresponds to the value k.

3.4.5 Dirichlet

Dirichlet distribution is a continuous multivariate probability distribution parmeterized by a vector of positive reals
(a1, @, ..., ak). Itis a multivariate generalization of the beta distribution. Dirichlet distributions are commonly
used as prior distributions in Bayesian statistics. The Dirichlet distribution of order £ > 2 has the following density
function.

P($1a372’-~-$k;0417a2,-~-,Oék) = W
i T

The definition of a random variable following a Beta distribution is done as follows:

x = inf.models.Dirichlet (concentration=[5,11])
# or simply:

x = inf.models.Dirichlet ([5,11])

where the input parameter concentration is the vector (g, ag, ..., ag).

3.4.6 Exponential

The exponential distribution (also known as negative exponential distribution) is defined over a continuous domain
and describes the time between events in a Poisson point process, i.e., a process in which events occur continuously
and independently at a constant average rate. Its probability density function is

Ae M if x>0
p(”’k)_{ 0 ifz <k

where A > 0 is the rate or inverse scale.

The definition of a random variable following a exponential distribution is done as follows:

x = inf.models.Exponential (rate=1)

# or simply

x = inf.models.Exponential (1)

where the input parameter rate corresponds to the value \.

3.4. Supported Probability Distributions 15




InferPy Documentation, Release 1.0

3.4.7 Gamma

The Gamma distribution is a continuous probability distribution parametrized by a concentration (or shape) parameter
a > 0, and an inverse scale parameter A > 0 called rate. Its density function is defined as follows.

Baxa—leﬂz

p(r;a, B) = o)

for > 0 and where T'(«) is the gamma function.

The definition of a random variable following a gamma distribution is done as follows:

x = inf.models.Gamma (concentration=3, rate=2)

where the input parameters concentration and rate corespond to « and J respectively.

3.4.8 Inverse-gamma

The Inverse-gamma distribution is a continuous probability distribution which is the distribution of the reciprocal
of a variable distributed according to the gamma distribution. It is also parametrized by a concentration (or shape)
parameter o > 0, and an inverse scale parameter A > 0 called rate. Its density function is defined as follows.

5ax—a—le—§

(0, B) = = rs

for x > 0 and where I'(«) is the gamma function.

The definition of a random variable following a inverse-gamma distribution is done as follows:

x = inf.models.InverseGamma (concentration=3, rate=2)

where the input parameters concentration and rate corespond to « and 3 respectively.

3.4.9 Laplace

The Laplace distribution is a continuous probability distribution with the following density function

, 1 |z — p
p(z;p,0) = —exp | ————

20 o

The definition of a random variable following a Beta distribution is done as follows:

x = inf.models.Laplace(loc=0, scale=1)

# or simply

x = inf.models.Laplace(0,1)

where the input parameter 1oc and scale correspond to i and o respectively.

3.4.10 Multinomial

The multinomial is a discrete distribution which models the probability of counts resulting from repeating n times an
experiment with k possible outcomes. Its probability mass function is defined below.

k
p(x1,@2,... Tk P) = —r— prf
[Ticy @i

16 Chapter 3. Guide to Building Probabilistic Models



InferPy Documentation, Release 1.0

where p is a k-dimensional vector defined as p = (p1,p2, ..., pr) With the probability associated to each possible
outcome.

The definition of a random variable following a multinomial distribution is done as follows:

x = inf.models.Multinomial (total_count=4, probs=[0.5,0.5])

# or

x = inf.models.Multinomial (total_count=4, logits=[0,01])

3.4.11 Multivariate-Normal

A multivariate-normal (or Gaussian) defines a set of normal-distributed variables which are assumed to be idependent.
In other words, the covariance matrix is diagonal.

A single multivariate-normal distribution defined on R? can be defined as follows.

x = inf.models.MultivariateNormalDiag (
loc=[1., -11,
scale_diag=[1l, 2.]

3.4.12 Normal

The normal (or Gaussian) distribution is a continuous probability distribution with the following density function

1 xr —
p(z;p,0) = 25 €%P <| M')

g

where p is the mean or expectation of the distribution, o is the standard deviation, and o2 is the variance.

A normal distribution can be defined as follows.

x = inf.models.Normal (loc=0, scale=1)
# or
x = inf.models.Normal (0, 1)

where the input parameter 1oc and scale correspond to i and o respectively.

3.4.13 Poisson

The Poisson distribution is a discrete probability distribution for modeling the number of times an event occurs in an
interval of time or space. Its probability mass function is

N

p(z;A) =e o

where ) is the rate or number of events per interval.

A Poisson distribution can be defined as follows.

3.4. Supported Probability Distributions 17




InferPy Documentation, Release 1.0

x = inf.models.Poisson (rate=4)
# or
x = inf.models.Poisson (4)

3.4.14 Uniform

The continuous uniform distribution or rectangular distribution assings the same probability to any z in the interval

[a, b].

p(z;a,b) = {

A uniform distribution can be defined as follows.

b

1

a

0 ifzéla,b

x = inf.models.Uniform(low=1, high=3)

# or

inf.models.Uniform(1, 3)

where the input parameters 1ow and high correspond to the lower and upper bounds of the interval [a, b].

18

Chapter 3. Guide to Building Probabilistic Models




CHAPTER 4

Guide to Approximate Inference

4.1 Getting Started with Approximate Inference

The API defines the set of algorithms and methods used to perform inference in a probabilistic model p(z, z, 9)
(where x are the observations, z the local hidden variibles, and € the global parameters of the model). More precisely,
the inference problem reduces to compute the posterior probability over the latent variables given a data sample
p(2, 0]Ttrain ), because by looking at these posteriors we can uncover the hidden structure in the data. For the running
example, the posterior over the local hidden variables p(wy, |Z¢rqin ) tell us the latent vector representation of the sample
Zn, while the posterior over the global variables p(fi|Z¢rqin) tells us which is the affine transformation between the
latent space and the observable space.

InferPy inherits Edward’s approach an consider approximate inference solutions,
Q(Zv 0) ~ p(zy 0|xt7'ain)

in which the task is to approximate the posterior p(z, 6|Ztrq:r ) using a family of distributions, ¢(z, 8; A), indexed by a
parameter vector \.

A probabilistic model in InferPy should be compiled before we can access these posteriors,

m.compile (infMethod="KLgp")
m.fit (x_train)
m.posterior (z)

The compilation process allows to choose the inference algorithm through the infMethod argument. In the above
example we use 'Klgp'.

Following InferPy guiding principles, users can further configure the inference algorithm. First, they can define a
model ‘Q’ for approximating the posterior distribution,

gw = inf.Qmodel.Normal (w)
gz = inf.Qmodel.Normal (z)

gmodel = inf.Qmodel ([gw, gz])

(continues on next page)

19




InferPy Documentation, Release 1.0

(continued from previous page)

m.compile (infMethod="KLgp", Q=gmodel)
m.fit (x_train)
m.posterior (z)

In the ‘Q’ model we should include a q distribution for every non observed variable in the ‘P’ model. Otherwise, an
error will be raised during model compilation.

By default, the posterior q belongs to the same distribution family than p , but in the above example we show how we
can change that (e.g. we set the posterior over mu to obtain a point mass estimate instead of the Gaussian approxima-
tion used by default). We can also configure how these ’s are initialized using any of the Keras’s initializers.

4.2 Compositional Inference

Note: not implemented yet

InferPy directly builds on top of Edward’s compositionality idea to design complex infererence algorithms.

pca = ProbModel (vars = [mu,w_n,x_n])

g mu = inf.inference.Q.PointMass (bind = mu, initializer='zeroes')

g w_n = inf.inference.Q.Normal (bind = w_n, initializer='random_unifrom')
glocal = QModel (vars = [g_w_n])

qgqglobal = QModel (vars = [mu])

infkl _gp = inf.inference.KLgp(Q = glocal, optimizer = 'sgd', innerIter = 10)
infMAP = inf.inference.MAP (Q = gglobal, optimizer = 'sgd'")

sgd = keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True)
infkl _gp = inf.inference.KLgp(Q = gmodel, optimizer = sgd, loss="ELBO")
probmodel.compile (infMethod = [infkl_qgp, infMAP])

pca.fit (x_train)
posterior_mu = pca.posterior (mu)

With the above sintaxis, we perform a variational EM algorithm, where the E step is repeated 10 times for every MAP
step.

More flexibility is also available by defining how each mini-batch is processed by the inference algorithm. The
following piece of code is equivalent to the above one,

pca = ProbModel (vars = [mu,w_n,x_nj)

g mu = inf.inference.Q.PointMass (bind = mu, initializer='zeroes')

g w_n = inf.inference.Q.Normal (bind = w_n, initializer='random_unifrom')
glocal = QModel (vars = [g_w_n])

gglobal = QModel (vars = [mu])

infkl gp = inf.inference.KLgp(Q = glocal, optimizer = 'sgd', innerIter = 10)
infMAP = inf.inference.MAP (Q = gglobal, optimizer = 'sgd')

(continues on next page)

20 Chapter 4. Guide to Approximate Inference




InferPy Documentation, Release 1.0

(continued from previous page)

emAlg = lambda (infMethod, dataBatch):
for _ in range(10)
infMethod[0] .update (data = dataBatch)

infMethod[1l] .update (data = dataBatch)
return

pca.compile (infMethod = [infkl_gp,infMAP], ingAlg = emAlgq)

pca.fit (x_train, EPOCHS = 10)
posterior_mu = pca.posterior (mu)

Have a look again at Inference Zoo to explore other complex compositional options.

4.3 Supported Inference Methods

4.3. Supported Inference Methods

21




InferPy Documentation, Release 1.0

22

Chapter 4. Guide to Approximate Inference



CHAPTER B

Guide to Model Validation

Note: not implemented yet

Model validation try to assess how faifthfully the inferered probabilistic model represents and explain the observed
data.

The main tool for model validation consists on analyzing the posterior predictive distribution,

p(ytestu Ttest ‘ytrainy xtrain) = fp(ytestv Ttest |Z7 e)p(zu 9|ytra7,'na xtrain)dZde

This posterior predictive distribution can be used to measure how well the model fits an independent dataset using the
test marginal log-likelihood, In p(ytest, Ttest |Ytrain, Tirain),

’log_like = probmodel.evaluate (test_data, metrics = ['log likelihood'])

In other cases, we may need to evalute the predictive capacity of the model with respect to some target variable y,

p(ytest |xtesta Ytrain, xtrain) = fp(ytest |$test; Z, H)p(z, 0|yt7“aina mtrain)dng

So the metrics can be computed with respect to this target variable by using the ‘targetvar’ argument,

log_like, accuracy, mse = probmodel.evaluate(test_data, targetvar = y, metrics = [
—'log_likelihood', 'accuracy', 'mse'])

So, the log-likelihood metric as well as the accuracy and the mean square error metric are computed by using the
predictive posterior p(Yiest|Ttests Ytrain, Tirain)-

Custom evaluation metrics can also be defined,

def mean_absolute_error (posterior, observations, weights=None) :
predictions = tf.map_fn(lambda x : x.getMean(), posterior)
return tf.metrics.mean_absolute_error (observations, predictions, weights)

mse, mae = probmodel.evaluate (test_data, targetvar = y, metrics = ['mse', mean_
—absolute_error])

23



InferPy Documentation, Release 1.0

24

Chapter 5. Guide to Model Validation



CHAPTER O

Guide to Data Handling

InferPy leverages existing Pandas functionality for reading data. As a consequence, InferPy can learn from datasets
in any file format handled by Pandas. This is possible because the method inferpy.ProbModel. fit (data)
accepts as input argument a Pandas DataFrame.

In the following code fragment, an example of learning a model from a CVS file is shown:

import inferpy as inf
import pandas as pd

data = pd.read_csv("inferpy/datasets/test.csv")
N = len(data)
with inf.ProbModel () as m:

thetaX = inf.models.Normal (loc=0., scale=1.)
thetaY inf.models.Normal (loc=0., scale=1.)

with inf.replicate(size=N):
x = inf.models.Normal (loc=thetaX, scale=1., observed=True, name="x")
y = inf.models.Normal (loc=thetaY¥, scale=1., observed=True, name="y")

m.compile ()
m.fit (data)

m.posterior ([thetaX, thetaY])

25



https://pandas.pydata.org

InferPy Documentation, Release 1.0

26

Chapter 6. Guide to Data Handling



CHAPTER /

Probabilistic Model Zoo

7.1 Bayesian Linear Regression

import edward as ed

import inferpy as inf

from inferpy.models import Normal
import numpy as np

d, N = 5, 20000

# model definition
with inf.ProbModel () as m:

#define the weights
w0 = Normal (0, 1)
w = Normal (0, 1, dim=d)

# define the generative model
with inf.replicate(size=N):
x = Normal (0, 1, observed=True, dim=d)
y = Normal (w0 + inf.dot(x,w), 1.0, observed=True)

# toy data generation

x_train = inf.models.Normal (loc=10, scale=5, dim=d).sample (N)

y_train = np.matmul (x_train, np.array([10,10,0.1,0.5,2]) .reshape((d,1))) \
+ inf.models.Normal (loc=0, scale=5, dim=1) .sample (N)

data = {x.name: x_train, y.name: y_train}

# compile and fit the model with training data
m.compile ()

(continues on next page)

27




InferPy Documentation, Release 1.0

(continued from previous page)

m.fit (data)

print (m.posterior ([w, wO0]))

7.2 Bayesian Logistic Regression

import edward as ed
import inferpy as inf
from inferpy.models import Normal, Bernoulli, Categorical

d, N = 10, 500

# model definition
with inf.ProbModel () as m:

#define the weights
w0 = Normal (0, 1)
w = Normal (0, 1, dim=d)

# define the generative model
with inf.replicate(size=N):
x = Normal (0, 1, observed=True, dim=d)
y = Bernoulli (logits=wO+inf.dot (x, w), observed=True)

# toy data generation

x_train = Normal (loc=0, scale=1, dim=d).sample (N)
y_train = Bernoulli (probs=0.4) .sample (N)

data = {x.name: x_train, y.name: y_train}

# compile and fit the model with training data
m.compile ()

m.fit (data)

print (m.posterior ([w, w0]))

7.3 Bayesian Multinomial Logistic Regression

import edward as ed

import inferpy as inf

from inferpy.models import Normal, Bernoulli, Categorical
import numpy as np

(continues on next page)

28 Chapter 7. Probabilistic Model Zoo




InferPy Documentation, Release 1.0

(continued from previous page)

d, N = 10, 500

#number of classes
K =3

# model definition
with inf.ProbModel () as m:

#define the weights
w0 = Normal (0,1, dim=K)

with inf.replicate(size=d):
w = Normal (0, 1, dim=K)

# define the generative model
with inf.replicate(size=N):
x = Normal (0, 1, observed=True, dim=d)
P w0 + inf.matmul (x, w)
y Bernoulli (logits = p, observed=True)

y .shape

# toy data generation

x_train = Normal (loc=0, scale=1, dim=d).sample (N)
y_train = Bernoulli (probs=np.random.rand(K)) .sample (N)
data = {x.name: x_train, y.name: y_train}

# compile and fit the model with training data
m.compile ()
m.fit (data)

print (m.posterior ([w, w0]))

7.4 Mixture of Gaussians

import edward as ed
import inferpy as inf
import numpy as np
import tensorflow as tf

K, d, N, T = 3, 4, 1000, 5000

# toy data generation
x_train = np.vstack([inf.models.Normal (loc=0, scale=1, dim=d).sample(300),

(continues on next page)

7.4. Mixture of Gaussians 29




InferPy Documentation, Release 1.0

(continued from previous page)

inf.models.Normal (loc=10, scale=1, dim=d).sample(700)1])

######## Inferpy ##########

# model definition
with inf.ProbModel () as m:

# prior distributions
with inf.replicate(size=K):

mu = inf.models.Normal (loc=0, scale=1, dim=d)

sigma = inf.models.InverseGamma (concentration=1, rate=1, dim=d,)
p = inf.models.Dirichlet (np.ones (K) /K)

# define the generative model
with inf.replicate(size=N):
z = inf.models.Categorical (probs = p)
x = inf.models.Normal (mu[z], sigmal[z],observed=True, dim=d)

# compile and fit the model with training data
data = {x: x_train}

m.compile (infMethod="MCMC")

m.fit (data)

# print the posterior
print (m.posterior (mu))

7.5 Linear Factor Model (PCA)

import edward as ed
import inferpy as inf

K, dr N = 5, lo, 200

# model definition
with inf.ProbModel () as m:
#define the weights
with inf.replicate(size=K):
w = inf.models.Normal (0, 1, dim=d)

# define the generative model
with inf.replicate(size=N):
z = inf.models.Normal (0, 1, dim=K)
x = inf.models.Normal (inf.matmul (z,w),
1.0, observed=True, dim=d)

# toy data generation
x_train = inf.models.Normal (loc=0, scale=1., dim=d).sample (N)
data = {x.name: x_train}

(continues on next page)

30 Chapter 7. Probabilistic Model Zoo




InferPy Documentation, Release 1.0

\ y
e \
\ y

Zn~ Nk (0,1)

Xn~ Ng(Zuw, )

Wi~ Ng(0,1)

Fig. 1: Linear Factor Model

7.5. Linear Factor Model (PCA)

31



InferPy Documentation, Release 1.0

(continued from previous page)

# compile and fit the model with training data
m.compile ()
m.fit (data)

#extract the hidden representation from a set of observations
hidden_encoding = m.posterior (z)

inf.dot (z, w)

7.6 PCA with ARD Prior (PCA)

import edward as ed
import inferpy as inf
from inferpy.models import Normal, InverseGamma

Kl dl N = 5, lo, 200

# model definition
with inf.ProbModel () as m:
#define the weights
with inf.replicate(size=K):
w = Normal (0, 1, dim=d)

sigma = InverseGamma (1.0,1.0)

# define the generative model
with inf.replicate(size=N):
z = Normal (0, 1, dim=K)
x = Normal (inf.matmul (z,w),
sigma, observed=True, dim=d)

# toy data generation
x_train = Normal (loc=0, scale=1., dim=d).sample (N)
data = {x.name: x_train}

# compile and fit the model with training data
m.compile ()
m.fit (data)

#extract the hidden representation from a set of observations
hidden_encoding = m.posterior(z)

7.7 Matrix Factorization

32 Chapter 7. Probabilistic Model Zoo



InferPy Documentation, Release 1.0

import inferpy as inf
from inferpy.models import Normal

N=200
M=50
K=5

# Shape [M,K]
with inf.replicate(size=K):
gamma = Normal (0,1, dim=M)

# Shape [N,K]

with inf.replicate(size=N):
w = Normal (0,1, dim=K)

# x_mn has shape [N,K] x [K,M]

with inf.replicate(size=N):

x = Normal (inf.matmul (w, gamma) ,

m = inf.ProbModel ([w,gamma, x])
data = m.sample (size=N)
log_prob = m.log_prob (data)
m.compile (infMethod = 'KLgp')
m.fit (data)

print (m.posterior ([w,gammal))

[N, M]

1,

observed =

True)

7.7. Matrix Factorization

33




InferPy Documentation, Release 1.0

34

Chapter 7. Probabilistic Model Zoo



CHAPTER 8

Inferpy vs Edward

8.1 Bayesian Linear Regression

import edward as ed
import inferpy as inf
import numpy as np
import tensorflow as tf

d, N = 5, 20000

# toy data generation

x_train = inf.models.Normal (loc=10, scale=5, dim=d).sample (N)

y_train = np.matmul (x_train, np.array([10,10,0.1,0.5,2]) .reshape((d,1))) \
+ inf.models.Normal (loc=0, scale=5, dim=1) .sample (N)

### InferPy #######

# model definition
with inf.ProbModel () as m:

# define the weights
w0 = inf.models.Normal (0, 1)
w = inf.models.Normal (0, 1, dim=d)

# define the generative model
with inf.replicate(size=N):
x = inf.models.Normal (0, 1, observed=True, dim=d)
vy inf.models.Normal (w0 + inf.dot(x,w), 1.0, observed=True)

(continues on next page)

35




InferPy Documentation, Release 1.0

(continued from previous page)

# compile and fit the model with training data
m.compile ()

data = {x: x_train, y: y_train}

m.fit (data)

# print the posterior distributions
print (m.posterior ([w, w0]))

### Edward #####

# define the weights
w0 = ed.models.Normal (loc=tf.zeros(l), scale=tf.ones (1))
w = ed.models.Normal (loc=tf.zeros(d), scale=tf.ones(d))

# define the generative model
x = ed.models.Normal (loc=tf.zeros([N,d]), scale=tf.ones ([N,d]))
vy ed.models.Normal (loc=ed.dot (x, w) + w0, scale=tf.ones(N))

# compile and fit the model with training data
gw = ed.models.Normal (loc=tf.Variable (tf.random_normal ([d])),
scale=tf.nn.softplus(tf.Variable (tf.random_normal ([d]))))
agw0 = ed.models.Normal (loc=tf.Variable (tf.random_normal ([1])),
scale=tf.nn.softplus (tf.Variable (tf.random_normal ([1]))))

inference = ed.KLgp ({w: gw, w0: gwO}, data={x: x_train, y: y_train.reshape(N) })
inference.run ()

# print the posterior distributions
print ([gw.loc.eval(), gwO.loc.eval()])

8.2 Gaussian Mixture

import edward as ed
import inferpy as inf
import numpy as np
import tensorflow as tf

K, d, N, T = 3, 4, 1000, 5000

# toy data generation
x_train = np.vstack([inf.models.Normal (loc=0, scale=1, dim=d).sample (300),
inf.models.Normal (loc=10, scale=1, dim=d).sample(700)]1])

######## Inferpy #########4#

# model definition
with inf.ProbModel () as m:

(continues on next page)

36 Chapter 8. Inferpy vs Edward




InferPy Documentation, Release 1.0

(continued from previous page)

# prior distributions
with inf.replicate(size=K):

mu = inf.models.Normal (loc=0, scale=1,
dim=d)
sigma = inf.models.InverseGamma (

concentration=1, rate=1, dim=d,)
p = inf.models.Dirichlet (np.ones (K) /K)

# define the generative model
with inf.replicate(size=N):

z = inf.models.Categorical (probs = p)
x = inf.models.Normal (muf[z], sigmalz],
observed=True,
dim=d)
# compile and fit the model with training data
data = {x: x_train}

m.compile (infMethod="MCMC")
m.fit (data)

# print the posterior
print (m.posterior (mu))

#H###### Edward ##########

# model definition

# prior distributions

p = ed.models.Dirichlet (concentration=tf.ones (K) /K)

mu = ed.models.Normal (0.0, 1.0, sample_shape=[K, d])

sigma = ed.models.InverseGamma (concentration=1.0,
rate=1.0,

sample_shape=[K, d])
# define the generative model
z = ed.models.Categorical (logits=tf.log(p) -
tf.log(l.0 - p),
sample_shape=N)
x = ed.models.Normal (loc=tf.gather (mu, z),
scale=tf.gather (sigma, z))

# compile and fit the model with training data

gp = ed.models.Empirical (params=tf.get_variable (
"gp/params",
[T, KI,
initializer=tf.constant_initializer (1.0 / K)))

gmu = ed.models.Empirical (

params=
tf.get_variable ("gmu/params",
[T, K, dl,
initializer=
tf.zeros_initializer()))

gsigma = ed.models.Empirical (
params=
tf.get_variable ("gsigma/params",

(continues on next page)

8.2. Gaussian Mixture 37



InferPy Documentation, Release 1.0

(continued from previous page)

[T, K, dl,
initializer=
tf.ones_initializer()))
gz = ed.models.Empirical (

params=

tf.get_variable ("gz/params",
[T, NI,
initializer=
tf.zeros_initializer (),
dtype=tf.int32))

gp = ed.models.Dirichlet (concentration=tf.ones (K))
gmu = ed.models.Normal (loc=tf.ones ([K,d]),
scale=tf.ones ([K,d]))
gsigma = ed.models.InverseGamma (concentration=
tf.ones ([K,d]),
rate=tf.ones ([K,d]))
gz = ed.models.Categorical (logits=tf.zeros ([N, K]))

inference = ed.MetropolisHastings (
latent_vars={p: gp, mu: gmu,
sigma: gsigma, z: gz},
proposal_vars={p: gp, mu: gmu,
sigma: gsigma, z: gz},
data={x: x_train})

inference.run ()

# print the posterior
print (gmu.params.eval ())

38 Chapter 8. Inferpy vs Edward




39



InferPy Documentation, Release 1.0

CHAPTER 9

inferpy package

9.1 Subpackages

9.1.1 inferpy.inferences package
Module contents

9.1.2 inferpy.models package
Submodules

inferpy.models.normal module
inferpy.models.random_variable module
Module contents

9.1.3 inferpy.util package
Submodules

inferpy.util.error module
inferpy.util.ops module
inferpy.util.runtime module
inferpy.util.wrappers module

Module contents

9.2 Submodules

40

9.3 inferpy.prob_model module

Chapter 9. inferpy package



	Getting Started:
	Guiding Principles
	Guide to Building Probabilistic Models
	Guide to Approximate Inference
	Guide to Model Validation
	Guide to Data Handling
	Probabilistic Model Zoo
	Inferpy vs Edward
	inferpy package

