
InferPy Documentation
Release 1.0

Javier Cózar, Rafael Cabañas, Antonio Salmerón, Andrés R. Masegosa

Jul 10, 2019

QUICK START

1 Getting Started: 3

2 Guiding Principles 7

3 Requirements 9

4 Guide to Probabilistic Models 11

5 Guide to Approximate Inference 17

6 Guide to Bayesian Deep Learning 21

7 Probabilistic Model Zoo 23

8 inferpy package 31

9 Contact and Support 165

Python Module Index 167

Index 169

i

ii

InferPy Documentation, Release 1.0

InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top of Tensorflow.
InferPy’s API is strongly inspired by Keras and it has a focus on enabling flexible data processing, easy-to-code
probablistic modeling, scalable inference and robust model validation.

Use InferPy if you need a probabilistic programming language that:

• Allows easy and fast prototyping of hierarchical probabilistic models with a simple and user friendly API in-
spired by Keras.

• Automatically creates computational efficient batched models without the need to deal with complex tensor
operations.

• Run seamlessly on CPU and GPU by relying on Tensorflow, without having to learn how to use Tensorflow.

A set of examples can be found in the Probabilistic Model Zoo section.

QUICK START 1

notes/probzoo.html

InferPy Documentation, Release 1.0

2 QUICK START

CHAPTER

ONE

GETTING STARTED:

1.1 Installation

Install InferPy from PyPI:

$ python -m pip install inferpy

1.2 30 seconds to InferPy

The core data structures of InferPy is a probabilistic model, defined as a set of random variables with a conditional
dependency structure. A random varible is an object parameterized by a set of tensors.

Let’s look at a simple non-linear probabilistic component analysis model (NLPCA). Graphically the model can be
defined as follows,

Fig. 1: Non-linear PCA

We start by importing the required packages and defining the constant parameters in the model.

import inferpy as inf
import tensorflow as tf

number of components
k = 1
size of the hidden layer in the NN
d0 = 100
dimensionality of the data
dx = 2
number of observations (dataset size)
N = 1000

3

InferPy Documentation, Release 1.0

A model can be defined by decorating any function with @inf.probmodel. The model is fully specified by the
variables defined inside this function:

@inf.probmodel
def nlpca(k, d0, dx, decoder):

with inf.datamodel():
z = inf.Normal(tf.ones([k])*0.5, 1., name="z") # shape = [N,k]
output = decoder(z,d0,dx)
x_loc = output[:,:dx]
x_scale = tf.nn.softmax(output[:,dx:])
x = inf.Normal(x_loc, x_scale, name="x") # shape = [N,d]

The construct with inf.datamodel(), which resembles to the plateau notation, will replicate N times the
variables enclosed, where N is the size of our data.

In the previous model, the input argument decoder must be a function implementing a neural network. This might
be defined outside the model as follows.

def decoder(z,d0,dx):
h0 = tf.layers.dense(z, d0, tf.nn.relu)
return tf.layers.dense(h0, 2 * dx)

Now, we can instantiate our model and obtain samples (from the prior distributions).

create an instance of the model
m = nlpca(k,d0,dx, decoder)

Sample from priors
samples = m.sample()

In variational inference, we must defined a Q-model as follows.

@inf.probmodel
def qmodel(k):

with inf.datamodel():
qz_loc = inf.Parameter(tf.ones([k])*0.5, name="qz_loc")
qz_scale = tf.math.softplus(inf.Parameter(tf.ones([k]),name="qz_scale"))

qz = inf.Normal(qz_loc, qz_scale, name="z")

Afterwards, we define the parameters of our inference algorithm and fit the data to the model.

set the inference algorithm
VI = inf.inference.VI(qmodel(k), epochs=5000)

learn the parameters
m.fit({"x": x_train}, VI)

The inference method can be further configure. But, as in Keras, a core principle is to try make things reasonably
simple, while allowing the user the full control if needed.

Finally, we might extract the posterior of z, which is basically the hidden representation of our data.

4 Chapter 1. Getting Started:

InferPy Documentation, Release 1.0

#extract the hidden representation
hidden_encoding = m.posterior["z"]
print(hidden_encoding.sample())

1.2. 30 seconds to InferPy 5

InferPy Documentation, Release 1.0

6 Chapter 1. Getting Started:

CHAPTER

TWO

GUIDING PRINCIPLES

2.1 Features

The main features of InferPy are listed below.

• Allows a simple definition and inference of probabilistic models containing deep neural networks.

• The models that can be defined in InferPy are those that can be defined using Edward2 (i.e., tfp.edward2,
whose probability distribuions are mainly inherited from the module distributions in the tensorflow-
probability package.

• Edward’s drawback is that for the model definition, the user has to manage complex multidimensional arrays
called tensors. By contrast, in InferPy all the parameters in a model can be defined using the standard Python
types (compatibility with Numpy is available as well).

• InferPy directly relies on top of Edward’s inference engine and includes all the inference algorithms included
in this package. As Edward’s inference engine relies on TensorFlow computing engine, InferPy also relies on it
too.

• Unlike Edward, our package does not require to have a strong background in the inference methods.

2.2 Architecture

Given the previous considerations, we might summarize the InferPy architecture as follows.

Note that InferPy can be seen as an upper layer for working with probabilistic distributions defined over tensors. Most
of the interaction is done with Edward: the definitions of the random variables, the inference. However, InferPy also
interacts directly with TensorFlow in some operations that are hidden to the user, e.g., the manipulation of the tensors
representing the parameters of the distributions.

An additional advantage of using Edward and TensorFlow as inference engine, is that all the paralelisation details are
hidden to the user. Moreover, the same code will run either in CPUs or GPUs.

7

InferPy Documentation, Release 1.0

8 Chapter 2. Guiding Principles

CHAPTER

THREE

REQUIREMENTS

3.1 System

Currently, InferPy requires Python 3.5 or higher. For checking your default Python version, type:

$ python --version

Travis tests are performed on versions 3.5 and 3.6. Go to https://www.python.org/ for specific instructions for installing
the Python interpreter in your system.

InferPy runs in any OS with the Python interpreter installed. In particular, tests have been carried out for the systems
listed bellow.

• Linux CentOS 7

• Linux Elementary 0.4

• Linux Mint 19

• Linux Ubuntu 14.04 16.04 18.04

• MacOS High Sierra (10.13) and Mojave (10.14)

• Windows 10 Enterprise

3.2 Package Dependencies

For a basic usage, InferPy requires the following packages:

tensorflow>=1.12.1,<2.0
tensorflow-probability>=0.5.0,<1.0
networkx>=2.2.0<3.0
matplotlib>=2.2.3,<3.0
Keras==2.2.4
Keras-Applications==1.0.7
Keras-Preprocessing==1.0.9
protobuf==3.8.0

9

https://www.python.org/

InferPy Documentation, Release 1.0

10 Chapter 3. Requirements

CHAPTER

FOUR

GUIDE TO PROBABILISTIC MODELS

4.1 Getting Started with Probabilistic Models

InferPy focuses on hierarchical probabilistic models structured in two different layers:

• A prior model defining a joint distribution 𝑝(w) over the global parameters of the model. w can be a single
random variable or a bunch of random variables with any given dependency structure.

• A data or observation model defining a joint conditional distribution 𝑝(x, z|w) over the observed quantities x
and the the local hidden variables z governing the observation x. This data model is specified in a single-sample
basis. There are many models of interest without local hidden variables, in that case, we simply specify the
conditional 𝑝(x|w). Similarly, either x or z can be a single random variable or a bunch of random variables
with any given dependency structure.

For example, a Bayesian PCA model has the following graphical structure,

Fig. 1: Bayesian PCA

The prior model are the variables 𝑤𝑘. The data model is the part of the model surrounded by the box indexed by N.

And this is how this Bayesian PCA model is denfined in InferPy:

definition of a generic model
@inf.probmodel
def pca(k,d):

w = inf.Normal(loc=np.zeros([k,d]), scale=1, name="w") # shape = [k,d]
with inf.datamodel():

z = inf.Normal(np.ones(k),1, name="z") # shape = [N,k]
x = inf.Normal(z @ w , 1, name="x") # shape = [N,d]

(continues on next page)

11

InferPy Documentation, Release 1.0

(continued from previous page)

create an instance of the model
m = pca(k=1,d=2)

The with inf.datamodel() sintaxis is used to replicate the random variables contained within this construct.
It follows from the so-called plateau notation to define the data generation part of a probabilistic model. Every
replicated variable is conditionally idependent given the previous random variables (if any) defined outside the with
statement. The plateau size will be later automatically calculated, so there is not need to specify it. Yet, this construct
has an optional input parameter for specifying its size, e.g., with inf.datamodel(size=N). This should be
consistent with the size of our data.

4.2 Random Variables

Any random variable in InferPy encapsulates an equivalent one in Edward 2, and hence it also has associated a dis-
tribution object from TensorFlow Probability. These can be accessed using the properties var and distribution
respectively:

>>> x = inf.Normal(loc = 0, scale = 1)

>>> x.var
<ed.RandomVariable 'randvar_0/' shape=() dtype=float32>

>>> x.distribution
<tfp.distributions.Normal 'randvar_0/' batch_shape=() event_shape=() dtype=float32>

Even more, InferPy random variables inherit all the properties and methods from Edward2 variables or TensorFlow
Probability distributions (in this order or priority). For example:

>>> x.value
<tf.Tensor 'randvar_0/sample/Reshape:0' shape=() dtype=float32>

>>> x.sample()
-0.05060442

>>> x.loc
<tf.Tensor 'randvar_0/Identity:0' shape=() dtype=float32>

In the previous code, value is inherited form the encapsulated Edward2 object while sample() and the parameter
loc are obtained from the distribution object. Note that the method sample() returns an evaluated tensors. In case
of desiring it not to be evaluated, simply use the input parameter tf_run as follows.

>>> x.sample(tf_run=False)
<tf.Tensor 'randvar_0/sample/Reshape:0' shape=() dtype=float32>

Following Edward’s approach, we (conceptually) partition a random variable’s shape into three groups:

• Batch shape describes independent, not identically distributed draws. Namely, we may have a set of (different)
parameterizations to the same distribution.

• Sample shape describes independent, identically distributed draws from the distribution.

• Event shape describes the shape of a single draw (event space) from the distribution; it may be dependent across
dimensions.

12 Chapter 4. Guide to Probabilistic Models

InferPy Documentation, Release 1.0

The previous attributes can be accessed by x.batch_shape, x.sample_shape and x.event_shape, respec-
tively. When declaring random variables, the batch_shape is obtained from the distribution parameters. For as long as
possible, the parameters will be broadcasted. With this in mind, all the definitions in the following code are equivalent.

x = inf.Normal(loc = [[0.,0.],[0.,0.],[0.,0.]], scale=1) # x.shape = [3,2]

x = inf.Normal(loc = np.zeros([3,2]), scale=1) # x.shape = [3,2]

x = inf.Normal(loc = 0, scale=tf.ones([3,2])) # x.shape = [3,2]

The sample_shape can be explicitly stated using the input parameter sample_shape, but this only can be
done outside a model definition. Inside of inf.probmodels, the sample_shape is fixed by with inf.
datamodel(size = N) (using the size argument when provided, or in runtime depending on the observed data).

x = inf.Normal(tf.ones([3,2]), 0, sample_shape=100) # x.sample = [100,3,2]

with inf.datamodel(100):
x = inf.Normal(tf.ones([3, 2]), 0) # x.sample = [100,3,2]

Finally, the event shape will only be consider in some distributions. This is the case of the multivariate Gaussian:

x = inf.MultivariateNormalDiag(loc=[1., -1], scale_diag=[1, 2.])

>>> x.event_shape
TensorShape([Dimension(2)])

>>> x.batch_shape
TensorShape([])

>>> x.sample_shape
TensorShape([])

Note that indexing over all the defined dimenensions is supported:

with inf.datamodel(size=10):
x = inf.models.Normal(loc=tf.zeros(5), scale=1.) # x.shape = [10,5]

y = x[7,4] # y.shape = []

y2 = x[7] # y2.shape = [5]

y3 = x[7,:] # y2.shape = [5]

y4 = x[:,4] # y4.shape = [10]

Moreover, we may use indexation for defining new variables whose indexes may be other (discrete) variables.

i = inf.Categorical(logits= tf.zeros(3)) # shape = []
mu = inf.Normal([5,1,-2], 0.) # shape = [3]
x = inf.Normal(mu[i], scale=1.) # shape = []

4.2. Random Variables 13

InferPy Documentation, Release 1.0

4.3 Probabilistic Models

A probabilistic model defines a joint distribution over observable and hidden variables, i.e., 𝑝(w, z,x). Note that
a variable might be observable or hidden depending on the fitted data. Thus this is not specified when defining the
model.

A probabilistic model is defined by decorating any function with @inf.probmodel. The model is made of any
variable defined inside this function. A simple example is shown below.

@inf.probmodel
def simple(mu=0):

global variables
theta = inf.Normal(mu, 0.1, name="theta")

local variables
with inf.datamodel():

x = inf.Normal(theta, 1, name="x")

Note that any variable in a model can be initialized with a name. If not provided, names generated automatically will
be used. However, it is highly convenient to explicitly specify the name of a random variable because in this way it
will be able to be referenced in some inference stages.

The model must be instantiated before it can be used. This is done by simple invoking the function (which will return
a probmodel object).

>>> m = simple()
>>> type(m)
<class 'inferpy.models.prob_model.ProbModel'>

Now we can use the model with the prior probabilities. For example, we might get a sample or access to the distribution
parameters:

>>> m.prior().sample()
{'theta': -0.074800275, 'x': array([0.07758344], dtype=float32)}

>>> m.prior().parameters()
{'theta': {'name': 'theta',

'allow_nan_stats': True,
'validate_args': False,
'scale': 0.1,
'loc': 0},

'x': {'name': 'x',
'allow_nan_stats': True,
'validate_args': False,
'scale': 1,
'loc': 0.116854645}}

or to extract the variables:

>>> m.vars["theta"]
<inf.RandomVariable (Normal distribution) named theta/, shape=(), dtype=float32>

We can create new and different instances of our model:

>>> m2 = simple(mu=5)
>>> m==m2
False

14 Chapter 4. Guide to Probabilistic Models

InferPy Documentation, Release 1.0

4.4 Supported Probability Distributions

Supported probability distributions are located in the package inferpy.models. All of them have inferpy.
models.RandomVariable as superclass. A list with all the supported distributions can be obtained as as follows.

>>> inf.models.random_variable.distributions_all
['Autoregressive', 'BatchReshape', 'Bernoulli', 'Beta', 'BetaWithSoftplusConcentration
→˓',
'Binomial', 'Categorical', 'Cauchy', 'Chi2', 'Chi2WithAbsDf',
→˓'ConditionalTransformedDistribution',
'Deterministic', 'Dirichlet', 'DirichletMultinomial', 'ExpRelaxedOneHotCategorical',

→˓ '
Exponential', 'ExponentialWithSoftplusRate', 'Gamma', 'GammaGamma',
'GammaWithSoftplusConcentrationRate', 'Geometric', 'GaussianProcess',
'GaussianProcessRegressionModel', 'Gumbel', 'HalfCauchy', 'HalfNormal',
'HiddenMarkovModel', 'Horseshoe', 'Independent', 'InverseGamma',
'InverseGammaWithSoftplusConcentrationRate', 'InverseGaussian', 'Kumaraswamy',
'LinearGaussianStateSpaceModel', 'Laplace', 'LaplaceWithSoftplusScale', 'LKJ',
'Logistic', 'LogNormal', 'Mixture', 'MixtureSameFamily', 'Multinomial',
'MultivariateNormalDiag', 'MultivariateNormalFullCovariance',

→˓'MultivariateNormalLinearOperator',
'MultivariateNormalTriL', 'MultivariateNormalDiagPlusLowRank',

→˓'MultivariateNormalDiagWithSoftplusScale',
'MultivariateStudentTLinearOperator', 'NegativeBinomial', 'Normal',

→˓'NormalWithSoftplusScale',
'OneHotCategorical', 'Pareto', 'Poisson', 'PoissonLogNormalQuadratureCompound',

→˓'QuantizedDistribution',
'RelaxedBernoulli', 'RelaxedOneHotCategorical', 'SinhArcsinh', 'StudentT',

→˓'StudentTWithAbsDfSoftplusScale',
'StudentTProcess', 'TransformedDistribution', 'Triangular', 'TruncatedNormal',

→˓'Uniform', 'VectorDeterministic',
'VectorDiffeomixture', 'VectorExponentialDiag', 'VectorLaplaceDiag',

→˓'VectorSinhArcsinhDiag', 'VonMises',
'VonMisesFisher', 'Wishart', 'Zipf']

Note that these are all the distributions in Edward 2 and hence in TensorFlow Probability. Their input parameters will
be the same.

4.4. Supported Probability Distributions 15

InferPy Documentation, Release 1.0

16 Chapter 4. Guide to Probabilistic Models

CHAPTER

FIVE

GUIDE TO APPROXIMATE INFERENCE

5.1 Variational Inference

The API defines the set of algorithms and methods used to perform inference in a probabilistic model 𝑝(𝑥, 𝑧, 𝜃)
(where 𝑥 are the observations, 𝑧 the local hidden variables, and 𝜃 the global parameters of the model). More precisely,
the inference problem reduces to compute the posterior probability over the latent variables given a data sample
𝑝(𝑧, 𝜃|𝑥𝑡𝑟𝑎𝑖𝑛), because by looking at these posteriors we can uncover the hidden structure in the data. Let us consider
the following model:

@inf.probmodel
def pca(k,d):

w = inf.Normal(loc=tf.zeros([k,d]), scale=1, name="w") # shape = [k,d]
with inf.datamodel():

z = inf.Normal(tf.ones([k]),1, name="z") # shape = [N,k]
x = inf.Normal(z @ w , 1, name="x") # shape = [N,d]

In this model, the posterior over the local hidden variables 𝑝(𝑤𝑛|𝑥𝑡𝑟𝑎𝑖𝑛) tell us the latent vector representation of the
sample 𝑥𝑛, while the posterior over the global variables 𝑝(𝜇|𝑥𝑡𝑟𝑎𝑖𝑛) tells us which is the affine transformation between
the latent space and the observable space.

InferPy inherits Edward’s approach an consider approximate inference solutions,

𝑞(𝑧, 𝜃) ≈ 𝑝(𝑧, 𝜃|𝑥𝑡𝑟𝑎𝑖𝑛)

in which the task is to approximate the posterior 𝑝(𝑧, 𝜃|𝑥𝑡𝑟𝑎𝑖𝑛) using a family of distributions, 𝑞(𝑧, 𝜃;𝜆), indexed by a
parameter vector 𝜆.

For making inference, we must define a model ‘Q’ for approximating the posterior distribution. This is also done by
defining a function decorated with @inf.probmodel:

@inf.probmodel
def qmodel(k,d):

qw_loc = inf.Parameter(tf.ones([k,d]), name="qw_loc")
qw_scale = tf.math.softplus(inf.Parameter(tf.ones([k, d]), name="qw_scale"))
qw = inf.Normal(qw_loc, qw_scale, name="w")

with inf.datamodel():
qz_loc = inf.Parameter(tf.ones([k]), name="qz_loc")
qz_scale = tf.math.softplus(inf.Parameter(tf.ones([k]), name="qz_scale"))
qz = inf.Normal(qz_loc, qz_scale, name="z")

In the ‘Q’ model we should include a q distribution for every non observed variable in the ‘P’ model. These vara-
iables are also objects of class inferpy.RandomVariable. However, their parameters might be of type inf.
Parameter, which are objects encapsulating TensorFlow trainable variables.

17

InferPy Documentation, Release 1.0

Then, we set the parameters of the inference algorithm. In case of variational inference (VI) we must specify an
instance of the ‘Q’ model and the number of epochs (i.e., iterations). For example:

set the inference algorithm
VI = inf.inference.VI(qmodel(k=1,d=2), epochs=1000)

VI can be further configured by setting the parameter optimizer which indicates the TensorFlow optimizer to be
used (AdamOptimizer by default).

Stochastic VI is similarly specified but has an additional input parameter for specifying the batch size:

SVI = inf.inference.SVI(qmodel(k=1,d=2), epochs=1000, batch_size=200)

Then we must instantiate our ‘P’ model and fit the data with the inference algorithm defined.

create an instance of the model
m = pca(k=1,d=2)
run the inference
m.fit({"x": x_train}, VI)

The output generated will be similar to:

0 epochs 44601.14453125....................
200 epochs 44196.98046875....................
400 epochs 50616.359375....................
600 epochs 41085.6484375....................
800 epochs 30349.79296875....................

Finally we can access to the parameters of the posterior distributions:

>>> m.posterior("w").parameters()
{'name': 'w',
'allow_nan_stats': True,
'validate_args': False,
'scale': array([[0.9834974 , 0.99731755]], dtype=float32),
'loc': array([[1.7543027, 1.7246702]], dtype=float32)}

5.2 Custom Loss function

Following InferPy guiding principles, users can further configure the inference algorithm. For example, we might be
interested in defining our own function to minimise. As an example, we define the following function taking as input
parameters the random variables of the P and Q models (we assume that their sample sizes are consistent with the
plates in the mdoel). Note that the output of this function must be a tensor.

def custom_elbo(pvars, qvars, **kwargs):

compute energy
energy = tf.reduce_sum([tf.reduce_sum(p.log_prob(p.value)) for p in pvars.

→˓values()])

compute entropy
entropy = - tf.reduce_sum([tf.reduce_sum(q.log_prob(q.value)) for q in qvars.

→˓values()])

compute ELBO

(continues on next page)

18 Chapter 5. Guide to Approximate Inference

InferPy Documentation, Release 1.0

(continued from previous page)

ELBO = energy + entropy

This function will be minimized. Return minus ELBO
return -ELBO

For using our own loss function, we simply have to pass this function to the input parameter loss in the inference
method constructor. For example:

set the inference algorithm
VI = inf.inference.VI(qmodel(k=1,d=2), loss=custom_elbo, epochs=1000)

run the inference
m.fit({"x": x_train}, VI)

After this, the rest of the code remains unchanged.

5.2. Custom Loss function 19

InferPy Documentation, Release 1.0

20 Chapter 5. Guide to Approximate Inference

CHAPTER

SIX

GUIDE TO BAYESIAN DEEP LEARNING

InferPy inherits Edward’s approach for representing probabilistic models as (stochastic) computational graphs. As
describe above, a random variable 𝑥 is associated to a tensor 𝑥* in the computational graph handled by TensorFlow,
where the computations takes place. This tensor 𝑥* contains the samples of the random variable 𝑥, i.e. 𝑥* ∼ 𝑝(𝑥|𝜃).
In this way, random variables can be involved in complex deterministic operations containing deep neural networks,
math operations and another libraries compatible with Tensorflow (such as Keras).

Bayesian deep learning or deep probabilistic programming enbraces the idea of employing deep neural networks
within a probabilistic model in order to capture complex non-linear dependencies between variables.

InferPy’s API gives support to this powerful and flexible modeling framework. Let us start by showing how a non-
linear PCA can be defined by mixing tf.layers and InferPy code.

import inferpy as inf
import tensorflow as tf

number of components
k = 1
size of the hidden layer in the NN
d0 = 100
dimensionality of the data
dx = 2
number of observations (dataset size)
N = 1000

@inf.probmodel
def nlpca(k, d0, dx, decoder):

with inf.datamodel():
z = inf.Normal(tf.ones([k])*0.5, 1., name="z") # shape = [N,k]
output = decoder(z,d0,dx)
x_loc = output[:,:dx]
x_scale = tf.nn.softmax(output[:,dx:])
x = inf.Normal(x_loc, x_scale, name="x") # shape = [N,d]

def decoder(z,d0,dx):
h0 = tf.layers.dense(z, d0, tf.nn.relu)
return tf.layers.dense(h0, 2 * dx)

Q-model approximating P

(continues on next page)

21

InferPy Documentation, Release 1.0

(continued from previous page)

@inf.probmodel
def qmodel(k):

with inf.datamodel():
qz_loc = inf.Parameter(tf.ones([k])*0.5, name="qz_loc")
qz_scale = tf.math.softplus(inf.Parameter(tf.ones([k]),name="qz_scale"))

qz = inf.Normal(qz_loc, qz_scale, name="z")

create an instance of the model
m = nlpca(k,d0,dx, decoder)

set the inference algorithm
VI = inf.inference.VI(qmodel(k), epochs=5000)

learn the parameters
m.fit({"x": x_train}, VI)

#extract the hidden representation
hidden_encoding = m.posterior("z")
print(hidden_encoding.sample())

In this case, the parameters of the decoder neural network (i.e., weights) are automatically managed by TensorFlow.
These parameters are them treated as model parameters and not exposed to the user. In consequence, we can not be
Bayesian about them by defining specific prior distributions.

Alternatively, we could use Keras layers by simply defining an alternative decoder function as follows.

def decoder_keras(z,d0,dx):
h0 = tf.keras.layers.Dense(d0, activation=tf.nn.relu, name="encoder_h0")
h1 = tf.keras.layers.Dense(2*dx, name="encoder_h1")
return h1(h0(z))

create an instance of the model
m = nlpca(k,d0,dx, decoder_keras)

22 Chapter 6. Guide to Bayesian Deep Learning

CHAPTER

SEVEN

PROBABILISTIC MODEL ZOO

In this section, we present the code for implementing some models in Inferpy.

7.1 Bayesian Linear Regression

Graphically, a (Bayesian) linear regression can be defined as follows,

Fig. 1: Bayesian Linear Regression

The InferPy code for this model is shown below,

import inferpy as inf
import tensorflow as tf

@inf.probmodel
def linear_reg(d):

w0 = inf.Normal(0, 1, name="w0")
w = inf.Normal(tf.zeros([d, 1]), 1, name="w")

with inf.datamodel():
x = inf.Normal(tf.ones(d), 2, name="x")
y = inf.Normal(w0 + x @ w, 1.0, name="y")

@inf.probmodel
def qmodel(d):

qw0_loc = inf.Parameter(0., name="qw0_loc")
qw0_scale = tf.math.softplus(inf.Parameter(1., name="qw0_scale"))
qw0 = inf.Normal(qw0_loc, qw0_scale, name="w0")

qw_loc = inf.Parameter(tf.zeros([d, 1]), name="qw_loc")
qw_scale = tf.math.softplus(inf.Parameter(tf.ones([d, 1]), name="qw_scale"))

(continues on next page)

23

InferPy Documentation, Release 1.0

(continued from previous page)

qw = inf.Normal(qw_loc, qw_scale, name="w")

create an instance of the model
m = linear_reg(d=2)

create toy data
N = 1000
data = m.prior(["x", "y"], data={"w0": 0, "w": [[2], [1]]}).sample(N)

x_train = data["x"]
y_train = data["y"]

set and run the inference
VI = inf.inference.VI(qmodel(2), epochs=10000)
m.fit({"x": x_train, "y": y_train}, VI)

extract the parameters of the posterior
m.posterior(["w", "w0"]).parameters()

7.2 Bayesian Logistic Regression

Graphically, a (Bayesian) logistic regression can be defined as follows,

Fig. 2: Bayesian Linear Regression

The InferPy code for this model is shown below,

required pacakges
import inferpy as inf
import numpy as np
import tensorflow as tf

@inf.probmodel
def log_reg(d):

w0 = inf.Normal(0., 1., name="w0")
w = inf.Normal(np.zeros([d, 1]), np.ones([d, 1]), name="w")

with inf.datamodel():
x = inf.Normal(np.zeros(d), 2., name="x") # the scale is broadcasted to

→˓shape [d] because of loc

(continues on next page)

24 Chapter 7. Probabilistic Model Zoo

InferPy Documentation, Release 1.0

(continued from previous page)

y = inf.Bernoulli(logits=w0 + x @ w, name="y")

@inf.probmodel
def qmodel(d):

qw0_loc = inf.Parameter(0., name="qw0_loc")
qw0_scale = tf.math.softplus(inf.Parameter(1., name="qw0_scale"))
qw0 = inf.Normal(qw0_loc, qw0_scale, name="w0")

qw_loc = inf.Parameter(tf.zeros([d, 1]), name="qw_loc")
qw_scale = tf.math.softplus(inf.Parameter(tf.ones([d, 1]), name="qw_scale"))
qw = inf.Normal(qw_loc, qw_scale, name="w")

create an instance of the model
m = log_reg(d=2)

create toy data
N = 1000
data = m.prior(["x", "y"], data={"w0": 0, "w": [[2], [1]]}).sample(N)
x_train = data["x"]
y_train = data["y"]

VI = inf.inference.VI(qmodel(2), epochs=10000)
m.fit({"x": x_train, "y": y_train}, VI)

sess = inf.get_session()
print(m.posterior("w").sample())
print(m.posterior("w").parameters())

7.3 Linear Factor Model (PCA)

A linear factor model allows to perform principal component analysis (PCA). Graphically, it can be defined as follows,

Fig. 3: Linear Factor Model (PCA)

The InferPy code for this model is shown below,

7.3. Linear Factor Model (PCA) 25

InferPy Documentation, Release 1.0

Generate toy data
x_train = np.concatenate([

inf.Normal([0.0, 0.0], scale=1.).sample(int(N/2)),
inf.Normal([10.0, 10.0], scale=1.).sample(int(N/2))
])

x_test = np.concatenate([
inf.Normal([0.0, 0.0], scale=1.).sample(int(N/2)),
inf.Normal([10.0, 10.0], scale=1.).sample(int(N/2))
])

definition of a generic model
@inf.probmodel
def pca(k, d):

beta = inf.Normal(loc=tf.zeros([k, d]),
scale=1, name="beta") # shape = [k,d]

with inf.datamodel():
z = inf.Normal(tf.ones(k), 1, name="z") # shape = [N,k]
x = inf.Normal(z @ beta, 1, name="x") # shape = [N,d]

@inf.probmodel
def qmodel(k, d):

qbeta_loc = inf.Parameter(tf.zeros([k, d]), name="qbeta_loc")
qbeta_scale = tf.math.softplus(inf.Parameter(tf.ones([k, d]),

name="qbeta_scale"))

qbeta = inf.Normal(qbeta_loc, qbeta_scale, name="beta")

with inf.datamodel():
qz_loc = inf.Parameter(np.ones(k), name="qz_loc")
qz_scale = tf.math.softplus(inf.Parameter(tf.ones(k),

name="qz_scale"))

qz = inf.Normal(qz_loc, qz_scale, name="z")

create an instance of the model and qmodel
m = pca(k=1, d=2)
q = qmodel(k=1, d=2)

set the inference algorithm
VI = inf.inference.VI(q, epochs=2000)

learn the parameters
m.fit({"x": x_train}, VI)

extract the hidden encoding

7.4 Non-linear Factor Model (NLPCA)

Similarly to the previous model, the Non-linear PCA can be graphically defined as follows,

26 Chapter 7. Probabilistic Model Zoo

InferPy Documentation, Release 1.0

Fig. 4: Non-linear PCA

Its code in InferPy is shown below,

import inferpy as inf
import tensorflow as tf

definition of a generic model

number of components
k = 1
size of the hidden layer in the NN
d0 = 100
dimensionality of the data
dx = 2
number of observations (dataset size)
N = 1000

@inf.probmodel
def nlpca(k, d0, dx, decoder):

with inf.datamodel():
z = inf.Normal(tf.ones([k])*0.5, 1., name="z") # shape = [N,k]
output = decoder(z,d0,dx)
x_loc = output[:,:dx]
x_scale = tf.nn.softmax(output[:,dx:])
x = inf.Normal(x_loc, x_scale, name="x") # shape = [N,d]

def decoder(z,d0,dx):
h0 = tf.layers.dense(z, d0, tf.nn.relu)
return tf.layers.dense(h0, 2 * dx)

Q-model approximating P

@inf.probmodel
def qmodel(k):

with inf.datamodel():
qz_loc = inf.Parameter(tf.ones([k])*0.5, name="qz_loc")
qz_scale = tf.math.softplus(inf.Parameter(tf.ones([k]),name="qz_scale"))

qz = inf.Normal(qz_loc, qz_scale, name="z")

(continues on next page)

7.4. Non-linear Factor Model (NLPCA) 27

InferPy Documentation, Release 1.0

(continued from previous page)

create an instance of the model
m = nlpca(k,d0,dx, decoder)

set the inference algorithm
VI = inf.inference.VI(qmodel(k), epochs=5000)

learn the parameters
m.fit({"x": x_train}, VI)

extract the hidden encoding
hidden_encoding = m.posterior("z").parameters()["loc"]

project x_test into the reduced space (encode)
m.posterior("z", data={"x": x_test}).sample(5)

sample from the posterior predictive (i.e., simulate values for x given the learnt
→˓hidden)
m.posterior_predictive("x").sample(5)

decode values from the hidden representation
m.posterior_predictive("x", data={"z": [2]}).sample(5)

7.5 Variational auto-encoder (VAE)

Similarly to the models PCA and NLPCA, a variational autoencoder allows to perform dimensionality reduction.
However a VAE will contain a neural network in the P model (decoder) and another one in the Q (encoder). Its code
in InferPy is shown below,

N = 1000

Generate toy data
x_train = np.concatenate([

inf.Normal([0.0, 0.0], scale=1.).sample(int(N/2)),
inf.Normal([10.0, 10.0], scale=1.).sample(int(N/2))
])

x_test = np.concatenate([
inf.Normal([0.0, 0.0], scale=1.).sample(int(N/2)),
inf.Normal([10.0, 10.0], scale=1.).sample(int(N/2))
])

number of components
k = 1
size of the hidden layer in the NN
d0 = 100
dimensionality of the data
dx = 2
number of observations (dataset size)
N = 1000

(continues on next page)

28 Chapter 7. Probabilistic Model Zoo

InferPy Documentation, Release 1.0

(continued from previous page)

@inf.probmodel
def vae(k, d0, dx, decoder):

with inf.datamodel():
z = inf.Normal(tf.ones(k) * 0.5, 1., name="z") # shape = [N,k]
output = decoder(z, d0, dx)
x_loc = output[:, :dx]
x_scale = tf.nn.softmax(output[:, dx:])
x = inf.Normal(x_loc, x_scale, name="x") # shape = [N,d]

def decoder(z, d0, dx): # k -> d0 -> 2*dx
h0 = tf.layers.dense(z, d0, tf.nn.relu)
return tf.layers.dense(h0, 2 * dx)

Q-model approximating P
def encoder(x, d0, k): # dx -> d0 -> 2*k

h0 = tf.layers.dense(x, d0, tf.nn.relu)
return tf.layers.dense(h0, 2 * k)

@inf.probmodel
def qmodel(k, d0, dx, encoder):

with inf.datamodel():
x = inf.Normal(tf.ones(dx), 1, name="x")

output = encoder(x, d0, k)
qz_loc = output[:, :k]
qz_scale = tf.nn.softmax(output[:, k:])

qz = inf.Normal(qz_loc, qz_scale, name="z")

create an instance of the model
m = vae(k, d0, dx, decoder)

7.5. Variational auto-encoder (VAE) 29

InferPy Documentation, Release 1.0

30 Chapter 7. Probabilistic Model Zoo

CHAPTER

EIGHT

INFERPY PACKAGE

8.1 Subpackages

8.1.1 inferpy.contextmanager package

Submodules

inferpy.contextmanager.data_model module

inferpy.contextmanager.data_model.datamodel(size=None)
This context is used to declare a plateau model. Random Variables and Parameters will use a sample_shape
defined by the argument size, or by the data_model.fit. If size is not specify, the default size 1, or the size
specified by fit will be used.

inferpy.contextmanager.data_model.fit(size)

inferpy.contextmanager.data_model.get_sample_shape(name)
This function must be used inside a datamodel context (it is not checked here) If var parameters are not expanded,
then expand.

name (str) The name of the variable to get its sample shape

returns a the sample_shape (number of samples of the datamodel). It is an integer, or ().

inferpy.contextmanager.data_model.is_active()

inferpy.contextmanager.evidence module

inferpy.contextmanager.evidence.observe(variables, data)

inferpy.contextmanager.randvar_registry module

inferpy.contextmanager.randvar_registry.get_graph()

inferpy.contextmanager.randvar_registry.get_var_parameters()

inferpy.contextmanager.randvar_registry.get_variable(name)

inferpy.contextmanager.randvar_registry.get_variable_or_parameter(name)

inferpy.contextmanager.randvar_registry.init(graph=None)

inferpy.contextmanager.randvar_registry.is_building_graph()

inferpy.contextmanager.randvar_registry.is_default()

31

InferPy Documentation, Release 1.0

inferpy.contextmanager.randvar_registry.register_parameter(p)

inferpy.contextmanager.randvar_registry.register_variable(rv)

inferpy.contextmanager.randvar_registry.restart_default()

inferpy.contextmanager.randvar_registry.update_graph(rv_name=None)

Module contents

8.1.2 inferpy.datasets package

Submodules

inferpy.datasets.mnist module

MNIST handwritten digits dataset.

inferpy.datasets.mnist.load_data(vectorize=True, num_instances=None,
num_instances_test=None, digits=[0, 1, 2, 3, 4, 5, 6, 7,
8, 9])

Loads the MNIST datase

Parameters

• vectorize – if true, each 2D image is transformed into a 1D vector

• num_instances – total number of images loaded

• digits – list of integers indicating the digits to be considered

Returns Tuple of Numpy arrays: ‘(x_train, y_train), (x_test, y_test)

inferpy.datasets.mnist.plot_digits(data, grid=[3, 3])

Module contents

8.1.3 inferpy.inference package

Subpackages

inferpy.inference.variational package

Subpackages

inferpy.inference.variational.loss_functions package

Submodules

inferpy.inference.variational.loss_functions.elbo module

inferpy.inference.variational.loss_functions.elbo.ELBO(pvars, qvars,
batch_weight=1, **kwargs)

Compute the loss tensor from the expanded variables of p and q models. :param pvars: The dict with the

32 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

expanded p random variables :type pvars: dict<inferpy.RandomVariable> :param qvars: The dict with the ex-
panded q random variables :type qvars: dict<inferpy.RandomVariable> :param batch_weight: Weight to assign
less importance to the energy, used when processing data in batches :type batch_weight: float

Returns (tf.Tensor): The generated loss tensor

Module contents

inferpy.inference.variational.loss_functions.ELBO(pvars, qvars, batch_weight=1,
**kwargs)

Compute the loss tensor from the expanded variables of p and q models. :param pvars: The dict with the
expanded p random variables :type pvars: dict<inferpy.RandomVariable> :param qvars: The dict with the ex-
panded q random variables :type qvars: dict<inferpy.RandomVariable> :param batch_weight: Weight to assign
less importance to the energy, used when processing data in batches :type batch_weight: float

Returns (tf.Tensor): The generated loss tensor

Submodules

inferpy.inference.variational.svi module

class inferpy.inference.variational.svi.SVI(*args, batch_size=100, **kwargs)
Bases: inferpy.inference.variational.vi.VI

compile(pmodel, data_size)

create_input_data_tensor(sample_dict)

update(sample_dict)

inferpy.inference.variational.vi module

class inferpy.inference.variational.vi.VI(qmodel, loss=’ELBO’, opti-
mizer=’AdamOptimizer’, epochs=1000)

Bases: inferpy.inference.inference.Inference

compile(pmodel, data_size)

log_prob(data)

property losses

parameters()

sample(size=1, data={})

update(sample_dict)

Module contents

Submodules

inferpy.inference.inference module

class inferpy.inference.inference.Inference
Bases: object

8.1. Subpackages 33

InferPy Documentation, Release 1.0

This class implements the functionality of any Inference class.

compile(pmodel, data_size)

log_prob(data)

parameters()

sample(size=1, data={})

sum_log_prob(data)
Computes the sum of the log probabilities of a (set of) sample(s)

update(sample_dict)

Module contents

Any inference class must implement a run method, which receives a sample_dict object, and returns a dict of posterior
objects (random distributions, list of samples, etc.)

class inferpy.inference.SVI(*args, batch_size=100, **kwargs)
Bases: inferpy.inference.variational.vi.VI

compile(pmodel, data_size)

create_input_data_tensor(sample_dict)

update(sample_dict)

class inferpy.inference.VI(qmodel, loss=’ELBO’, optimizer=’AdamOptimizer’, epochs=1000)
Bases: inferpy.inference.inference.Inference

compile(pmodel, data_size)

log_prob(data)

property losses

parameters()

sample(size=1, data={})

update(sample_dict)

8.1.4 inferpy.models package

Submodules

inferpy.models.parameter module

class inferpy.models.parameter.Parameter(initial_value, name=None)
Bases: object

Random Variable parameter which can be optimized by an inference mechanism.

inferpy.models.prob_model module

class inferpy.models.prob_model.ProbModel(builder)
Bases: object

34 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

Class that implements the probabilistic model functionality. It is composed of a graph, capturing the variable
relationships, an OrderedDict containing the Random Variables/Parameters in order of creation, and the function
which declare the Random Variables/Parameters.

expand_model(size=1)
Create the expanded model vars using size as plate size and return the OrderedDict

fit(sample_dict, inference_method)

plot_graph()

posterior(target_names=None, data={})

posterior_predictive(target_names=None, data={})

prior(target_names=None, data={})

update(sample_dict)

inferpy.models.prob_model.probmodel(builder)
Decorator to create probabilistic models. The function decorated must be a function which declares the Random
Variables in the model. It is not needed that the function returns such variables (we capture them using ed.tape).

inferpy.models.random_variable module

inferpy.models.random_variable.Autoregressive(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Autoregressive.

See Autoregressive for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct an Autoregressive distribution.

Parameters

• distribution_fn – Python callable which constructs a tfd.Distribution-like instance
from a Tensor (e.g., sample0). The function must respect the “autoregressive property”, i.e.,
there exists a permutation of event such that each coordinate is a diffeomorphic function of
on preceding coordinates.

• sample0 – Initial input to distribution_fn; used to build the distribution in __init__ which
in turn specifies this distribution’s properties, e.g., event_shape, batch_shape, dtype. If
unspecified, then distribution_fn should be default constructable.

• num_steps – Number of times distribution_fn is composed from samples, e.g.,
num_steps=2 implies distribution_fn(distribution_fn(sample0).sample(n)).sample().

• validate_args – Python bool. Whether to validate input with asserts. If validate_args
is False, and the inputs are invalid, correct behavior is not guaranteed.

8.1. Subpackages 35

InferPy Documentation, Release 1.0

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class. Default value: “Autoregres-
sive”.

Raises

• ValueError – if num_steps and num_elements(distribution_fn(sample0).event_shape)
are both None.

• ValueError – if num_steps < 1.

inferpy.models.random_variable.BatchReshape(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for BatchReshape.

See BatchReshape for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct BatchReshape distribution.

Parameters

• distribution – The base distribution instance to reshape. Typically an instance of
Distribution.

• batch_shape – Positive int-like vector-shaped Tensor representing the new shape of the
batch dimensions. Up to one dimension may contain -1, meaning the remainder of the batch
size.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – The name to give Ops created by the initializer. Default value: “BatchReshape” +
distribution.name.

Raises

• ValueError – if batch_shape is not a vector.

• ValueError – if batch_shape has non-positive elements.

• ValueError – if batch_shape size is not the same as a distribution.batch_shape size.

inferpy.models.random_variable.Bernoulli(*args, **kwargs)

36 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Bernoulli.

See Bernoulli for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Bernoulli distributions.

Parameters

• logits – An N-D Tensor representing the log-odds of a 1 event. Each entry in the Ten-
sor parametrizes an independent Bernoulli distribution where the probability of an event is
sigmoid(logits). Only one of logits or probs should be passed in.

• probs – An N-D Tensor representing the probability of a 1 event. Each entry in the Tensor
parameterizes an independent Bernoulli distribution. Only one of logits or probs should be
passed in.

• dtype – The type of the event samples. Default: int32.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – If p and logits are passed, or if neither are passed.

inferpy.models.random_variable.Beta(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Beta.

See Beta for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Beta distributions.

8.1. Subpackages 37

InferPy Documentation, Release 1.0

Parameters

• concentration1 – Positive floating-point Tensor indicating mean number of successes;
aka “alpha”. Implies self.dtype and self.batch_shape, i.e., concentration1.shape = [N1, N2,
. . . , Nm] = self.batch_shape.

• concentration0 – Positive floating-point Tensor indicating mean number of failures;
aka “beta”. Otherwise has same semantics as concentration1.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.Binomial(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Binomial.

See Binomial for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Binomial distributions.

Parameters

• total_count – Non-negative floating point tensor with shape broadcastable to [N1,. . . ,
Nm] with m >= 0 and the same dtype as probs or logits. Defines this as a batch of N1 x . . .
x Nm different Binomial distributions. Its components should be equal to integer values.

• logits – Floating point tensor representing the log-odds of a positive event with shape
broadcastable to [N1,. . . , Nm] m >= 0, and the same dtype as total_count. Each entry
represents logits for the probability of success for independent Binomial distributions. Only
one of logits or probs should be passed in.

• probs – Positive floating point tensor with shape broadcastable to [N1,. . . , Nm] m >= 0,
probs in [0, 1]. Each entry represents the probability of success for independent Binomial
distributions. Only one of logits or probs should be passed in.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

38 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.Blockwise(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Blockwise.

See Blockwise for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct the Blockwise distribution.

Parameters

• distributions – Python list of tfp.distributions.Distribution instances. All distribu-
tion instances must have the same batch_shape and all must have event_ndims==1, i.e., be
vector-variate distributions.

• dtype_override – samples of distributions will be cast to this dtype. If unspecified, all
distributions must have the same dtype. Default value: None (i.e., do not cast).

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.Categorical(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Categorical.

See Categorical for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize Categorical distributions using class log-probabilities.

8.1. Subpackages 39

InferPy Documentation, Release 1.0

Parameters

• logits – An N-D Tensor, N >= 1, representing the log probabilities of a set of Categorical
distributions. The first N - 1 dimensions index into a batch of independent distributions and
the last dimension represents a vector of logits for each class. Only one of logits or probs
should be passed in.

• probs – An N-D Tensor, N >= 1, representing the probabilities of a set of Categorical
distributions. The first N - 1 dimensions index into a batch of independent distributions and
the last dimension represents a vector of probabilities for each class. Only one of logits or
probs should be passed in.

• dtype – The type of the event samples (default: int32).

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.Cauchy(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Cauchy.

See Cauchy for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Cauchy distributions.

The parameters loc and scale must be shaped in a way that supports broadcasting (e.g. loc + scale is a valid
operation).

Parameters

• loc – Floating point tensor; the modes of the distribution(s).

• scale – Floating point tensor; the locations of the distribution(s). Must contain only posi-
tive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

40 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if loc and scale have different dtype.

inferpy.models.random_variable.Chi(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Chi.

See Chi for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Chi distributions with parameter df.

Parameters

• df – Floating point tensor, the degrees of freedom of the distribution(s). df must contain
only positive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value NaN to indicate the result is undefined. When False, an exception is
raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class. Default value: ‘Chi’.

inferpy.models.random_variable.Chi2(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Chi2.

See Chi2 for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Chi2 distributions with parameter df.

Parameters

8.1. Subpackages 41

InferPy Documentation, Release 1.0

• df – Floating point tensor, the degrees of freedom of the distribution(s). df must contain
only positive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.Chi2WithAbsDf(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Chi2WithAbsDf.

See Chi2WithAbsDf for more details.

Returns RandomVariable.

Original Docstring for Distribution

DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2019-06-05. Instructions for updating:
Chi2WithAbsDf is deprecated, use Chi2(df=tf.floor(tf.abs(df))) instead.

inferpy.models.random_variable.ConditionalDistribution(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for ConditionalDistribution.

See ConditionalDistribution for more details.

Returns RandomVariable.

Original Docstring for Distribution

Constructs the Distribution.

This is a private method for subclass use.

Parameters

• dtype – The type of the event samples. None implies no type-enforcement.

42 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• reparameterization_type – Instance of ReparameterizationType. If
tfd.FULLY_REPARAMETERIZED, this Distribution can be reparameterized in terms
of some standard distribution with a function whose Jacobian is constant for the support of
the standard distribution. If tfd.NOT_REPARAMETERIZED, then no such reparameteriza-
tion is available.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• parameters – Python dict of parameters used to instantiate this Distribution.

• graph_parents – Python list of graph prerequisites of this Distribution.

• name – Python str name prefixed to Ops created by this class. Default: subclass name.

Raises ValueError – if any member of graph_parents is None or not a Tensor.

inferpy.models.random_variable.ConditionalTransformedDistribution(*args,
**kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for ConditionalTransformedDistribution.

See ConditionalTransformedDistribution for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a Transformed Distribution.

Parameters

• distribution – The base distribution instance to transform. Typically an instance of
Distribution.

• bijector – The object responsible for calculating the transformation. Typically an in-
stance of Bijector.

• batch_shape – integer vector Tensor which overrides distribution batch_shape; valid
only if distribution.is_scalar_batch().

• event_shape – integer vector Tensor which overrides distribution event_shape; valid
only if distribution.is_scalar_event().

• kwargs_split_fn – Python callable which takes a kwargs dict and returns a tuple of
kwargs dict‘s for each of the ‘distribution and bijector parameters respectively. Default
value: _default_kwargs_split_fn (i.e.,

‘lambda kwargs: (kwargs.get(‘distribution_kwargs’, {}),
kwargs.get(‘bijector_kwargs’, {}))‘)

8.1. Subpackages 43

InferPy Documentation, Release 1.0

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• parameters – Locals dict captured by subclass constructor, to be used for copy/slice
re-instantiation operations.

• name – Python str name prefixed to Ops created by this class. Default: bijector.name +
distribution.name.

inferpy.models.random_variable.Deterministic(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Deterministic.

See Deterministic for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a scalar Deterministic distribution.

The atol and rtol parameters allow for some slack in pmf, cdf computations, e.g. due to floating-point error.

‘‘‘ pmf(x; loc)

= 1, if Abs(x - loc) <= atol + rtol * Abs(loc), = 0, otherwise.

‘‘‘

Parameters

• loc – Numeric Tensor of shape [B1, . . . , Bb], with b >= 0. The point (or batch of points)
on which this distribution is supported.

• atol – Non-negative Tensor of same dtype as loc and broadcastable shape. The absolute
tolerance for comparing closeness to loc. Default is 0.

• rtol – Non-negative Tensor of same dtype as loc and broadcastable shape. The relative
tolerance for comparing closeness to loc. Default is 0.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.Dirichlet(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

44 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Dirichlet.

See Dirichlet for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Dirichlet distributions.

Parameters

• concentration – Positive floating-point Tensor indicating mean number of class oc-
currences; aka “alpha”. Implies self.dtype, and self.batch_shape, self.event_shape, i.e., if
concentration.shape = [N1, N2, . . . , Nm, k] then batch_shape = [N1, N2, . . . , Nm] and
event_shape = [k].

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.DirichletMultinomial(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for DirichletMultinomial.

See DirichletMultinomial for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of DirichletMultinomial distributions.

Parameters

• total_count – Non-negative floating point tensor, whose dtype is the same as concen-
tration. The shape is broadcastable to [N1,. . . , Nm] with m >= 0. Defines this as a batch of
N1 x . . . x Nm different Dirichlet multinomial distributions. Its components should be equal
to integer values.

8.1. Subpackages 45

InferPy Documentation, Release 1.0

• concentration – Positive floating point tensor, whose dtype is the same as n with shape
broadcastable to [N1,. . . , Nm, K] m >= 0. Defines this as a batch of N1 x . . . x Nm different
K class Dirichlet multinomial distributions.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.Distribution(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Distribution.

See Distribution for more details.

Returns RandomVariable.

Original Docstring for Distribution

Constructs the Distribution.

This is a private method for subclass use.

Parameters

• dtype – The type of the event samples. None implies no type-enforcement.

• reparameterization_type – Instance of ReparameterizationType. If
tfd.FULLY_REPARAMETERIZED, this Distribution can be reparameterized in terms
of some standard distribution with a function whose Jacobian is constant for the support of
the standard distribution. If tfd.NOT_REPARAMETERIZED, then no such reparameteriza-
tion is available.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• parameters – Python dict of parameters used to instantiate this Distribution.

• graph_parents – Python list of graph prerequisites of this Distribution.

• name – Python str name prefixed to Ops created by this class. Default: subclass name.

Raises ValueError – if any member of graph_parents is None or not a Tensor.

inferpy.models.random_variable.Empirical(*args, **kwargs)

46 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Empirical.

See Empirical for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize Empirical distributions.

Parameters

• samples – Numeric Tensor of shape [B1, . . . , Bk, S, E1, . . . , En]‘, k, n >= 0. Samples or
batches of samples on which the distribution is based. The first k dimensions index into a
batch of independent distributions. Length of S dimension determines number of samples in
each multiset. The last n dimension represents samples for each distribution. n is specified
by argument event_ndims.

• event_ndims – Python int32, default 0. number of dimensions for each event. When 0
this distribution has scalar samples. When 1 this distribution has vector-like samples.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value NaN to indicate the result is undefined. When False, an exception is
raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if the rank of samples < event_ndims + 1.

inferpy.models.random_variable.ExpRelaxedOneHotCategorical(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for ExpRelaxedOneHotCategorical.

See ExpRelaxedOneHotCategorical for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize ExpRelaxedOneHotCategorical using class log-probabilities.

8.1. Subpackages 47

InferPy Documentation, Release 1.0

Parameters

• temperature – An 0-D Tensor, representing the temperature of a set of ExpRelaxedCat-
egorical distributions. The temperature should be positive.

• logits – An N-D Tensor, N >= 1, representing the log probabilities of a set of Ex-
pRelaxedCategorical distributions. The first N - 1 dimensions index into a batch of inde-
pendent distributions and the last dimension represents a vector of logits for each class.
Only one of logits or probs should be passed in.

• probs – An N-D Tensor, N >= 1, representing the probabilities of a set of ExpRelaxed-
Categorical distributions. The first N - 1 dimensions index into a batch of independent
distributions and the last dimension represents a vector of probabilities for each class. Only
one of logits or probs should be passed in.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.Exponential(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Exponential.

See Exponential for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Exponential distribution with parameter rate.

Parameters

• rate – Floating point tensor, equivalent to 1 / mean. Must contain only positive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.FiniteDiscrete(*args, **kwargs)

48 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for FiniteDiscrete.

See FiniteDiscrete for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a finite discrete contribution.

Parameters

• outcomes – A 1-D floating or integer Tensor, representing a list of possible outcomes in
strictly ascending order.

• logits – A floating N-D Tensor, N >= 1, representing the log probabilities of a set of
FiniteDiscrete distributions. The first N - 1 dimensions index into a batch of independent
distributions and the last dimension represents a vector of logits for each discrete value.
Only one of logits or probs should be passed in.

• probs – A floating N-D Tensor, N >= 1, representing the probabilities of a set of FiniteDis-
crete distributions. The first N - 1 dimensions index into a batch of independent distributions
and the last dimension represents a vector of probabilities for each discrete value. Only one
of logits or probs should be passed in.

• rtol – Tensor with same dtype as outcomes. The relative tolerance for floating number
comparison. Only effective when outcomes is a floating Tensor. Default is 10 * eps.

• atol – Tensor with same dtype as outcomes. The absolute tolerance for floating number
comparison. Only effective when outcomes is a floating Tensor. Default is 10 * eps.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value ‘NaN’ to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.Gamma(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

8.1. Subpackages 49

InferPy Documentation, Release 1.0

Create a random variable for Gamma.

See Gamma for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Gamma with concentration and rate parameters.

The parameters concentration and rate must be shaped in a way that supports broadcasting (e.g. concentration
+ rate is a valid operation).

Parameters

• concentration – Floating point tensor, the concentration params of the distribution(s).
Must contain only positive values.

• rate – Floating point tensor, the inverse scale params of the distribution(s). Must contain
only positive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if concentration and rate are different dtypes.

inferpy.models.random_variable.GammaGamma(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for GammaGamma.

See GammaGamma for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initializes a batch of Gamma-Gamma distributions.

The parameters concentration and rate must be shaped in a way that supports broadcasting (e.g. concentration
+ mixing_concentration + mixing_rate is a valid operation).

Parameters

• concentration – Floating point tensor, the concentration params of the distribution(s).
Must contain only positive values.

• mixing_concentration – Floating point tensor, the concentration params of the mix-
ing Gamma distribution(s). Must contain only positive values.

50 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• mixing_rate – Floating point tensor, the rate params of the mixing Gamma distribu-
tion(s). Must contain only positive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if concentration and rate are different dtypes.

inferpy.models.random_variable.GaussianProcess(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for GaussianProcess.

See GaussianProcess for more details.

Returns RandomVariable.

Original Docstring for Distribution

Instantiate a GaussianProcess Distribution.

Parameters

• kernel – PositiveSemidefiniteKernel-like instance representing the GP’s covariance func-
tion.

• index_points – float Tensor representing finite (batch of) vector(s) of points in the in-
dex set over which the GP is defined. Shape has the form [b1, . . . , bB, e, f1, . . . , fF]
where F is the number of feature dimensions and must equal kernel.feature_ndims and e
is the number (size) of index points in each batch. Ultimately this distribution corresponds
to a e-dimensional multivariate normal. The batch shape must be broadcastable with ker-
nel.batch_shape and any batch dims yielded by mean_fn.

• mean_fn – Python callable that acts on index_points to produce a (batch of) vector(s) of
mean values at index_points. Takes a Tensor of shape [b1, . . . , bB, f1, . . . , fF] and returns
a Tensor whose shape is broadcastable with [b1, . . . , bB]. Default value: None implies
constant zero function.

• observation_noise_variance – float Tensor representing the variance of the noise
in the Normal likelihood distribution of the model. May be batched, in which case the
batch shape must be broadcastable with the shapes of all other batched parameters (ker-
nel.batch_shape, index_points, etc.). Default value: 0.

• jitter – float scalar Tensor added to the diagonal of the covariance matrix to ensure
positive definiteness of the covariance matrix. Default value: 1e-6.

8.1. Subpackages 51

InferPy Documentation, Release 1.0

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: False.

• name – Python str name prefixed to Ops created by this class. Default value: “Gaussian-
Process”.

Raises ValueError – if mean_fn is not None and is not callable.

inferpy.models.random_variable.GaussianProcessRegressionModel(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for GaussianProcessRegressionModel.

See GaussianProcessRegressionModel for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a GaussianProcessRegressionModel instance.

Parameters

• kernel – PositiveSemidefiniteKernel-like instance representing the GP’s covariance func-
tion.

• index_points – float Tensor representing finite collection, or batch of collections, of
points in the index set over which the GP is defined. Shape has the form [b1, . . . , bB, e, f1,
. . . , fF] where F is the number of feature dimensions and must equal kernel.feature_ndims
and e is the number (size) of index points in each batch. Ultimately this distribution cor-
responds to an e-dimensional multivariate normal. The batch shape must be broadcastable
with kernel.batch_shape and any batch dims yielded by mean_fn.

• observation_index_points – float Tensor representing finite collection, or batch
of collections, of points in the index set for which some data has been observed. Shape
has the form [b1, . . . , bB, e, f1, . . . , fF] where F is the number of feature dimensions and
must equal kernel.feature_ndims, and e is the number (size) of index points in each batch.
[b1, . . . , bB, e] must be broadcastable with the shape of observations, and [b1, . . . , bB]
must be broadcastable with the shapes of all other batched parameters (kernel.batch_shape,
index_points, etc). The default value is None, which corresponds to the empty set of ob-
servations, and simply results in the prior predictive model (a GP with noise of variance
predictive_noise_variance).

• observations – float Tensor representing collection, or batch of collections, of observa-
tions corresponding to observation_index_points. Shape has the form [b1, . . . , bB, e], which
must be brodcastable with the batch and example shapes of observation_index_points. The
batch shape [b1, . . . , bB] must be broadcastable with the shapes of all other batched parame-
ters (kernel.batch_shape, index_points, etc.). The default value is None, which corresponds

52 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

to the empty set of observations, and simply results in the prior predictive model (a GP with
noise of variance predictive_noise_variance).

• observation_noise_variance – float Tensor representing the variance of the noise
in the Normal likelihood distribution of the model. May be batched, in which case the
batch shape must be broadcastable with the shapes of all other batched parameters (ker-
nel.batch_shape, index_points, etc.). Default value: 0.

• predictive_noise_variance – float Tensor representing the variance in the poste-
rior predictive model. If None, we simply re-use observation_noise_variance for the pos-
terior predictive noise. If set explicitly, however, we use this value. This allows us, for
example, to omit predictive noise variance (by setting this to zero) to obtain noiseless pos-
terior predictions of function values, conditioned on noisy observations.

• mean_fn – Python callable that acts on index_points to produce a collection, or batch of
collections, of mean values at index_points. Takes a Tensor of shape [b1, . . . , bB, f1, . . . , fF]
and returns a Tensor whose shape is broadcastable with [b1, . . . , bB]. Default value: None
implies the constant zero function.

• jitter – float scalar Tensor added to the diagonal of the covariance matrix to ensure
positive definiteness of the covariance matrix. Default value: 1e-6.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value NaN to indicate the result is undefined. When False, an exception is
raised if one or more of the statistic’s batch members are undefined. Default value: False.

• name – Python str name prefixed to Ops created by this class. Default value: ‘Gaussian-
ProcessRegressionModel’.

Raises ValueError – if either - only one of observations and observation_index_points is given,
or - mean_fn is not None and not callable.

inferpy.models.random_variable.Geometric(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Geometric.

See Geometric for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Geometric distributions.

Parameters

• logits – Floating-point Tensor with shape [B1, . . . , Bb] where b >= 0 indicates the
number of batch dimensions. Each entry represents logits for the probability of success for

8.1. Subpackages 53

InferPy Documentation, Release 1.0

independent Geometric distributions and must be in the range (-inf, inf]. Only one of logits
or probs should be specified.

• probs – Positive floating-point Tensor with shape [B1, . . . , Bb] where b >= 0 indicates
the number of batch dimensions. Each entry represents the probability of success for inde-
pendent Geometric distributions and must be in the range (0, 1]. Only one of logits or probs
should be specified.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.Gumbel(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Gumbel.

See Gumbel for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Gumbel distributions with location and scale loc and scale.

The parameters loc and scale must be shaped in a way that supports broadcasting (e.g. loc + scale is a valid
operation).

Parameters

• loc – Floating point tensor, the means of the distribution(s).

• scale – Floating point tensor, the scales of the distribution(s). scale must contain only
positive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class. Default value: ‘Gumbel’.

Raises TypeError – if loc and scale are different dtypes.

inferpy.models.random_variable.HalfCauchy(*args, **kwargs)

54 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for HalfCauchy.

See HalfCauchy for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a half-Cauchy distribution with loc and scale.

Parameters

• loc – Floating-point Tensor; the location(s) of the distribution(s).

• scale – Floating-point Tensor; the scale(s) of the distribution(s). Must contain only posi-
tive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False (i.e. do not validate args).

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class. Default value: ‘HalfCauchy’.

Raises TypeError – if loc and scale have different dtype.

inferpy.models.random_variable.HalfNormal(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for HalfNormal.

See HalfNormal for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct HalfNormals with scale scale.

Parameters

• scale – Floating point tensor; the scales of the distribution(s). Must contain only positive
values.

8.1. Subpackages 55

InferPy Documentation, Release 1.0

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.HiddenMarkovModel(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for HiddenMarkovModel.

See HiddenMarkovModel for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize hidden Markov model.

Parameters

• initial_distribution – A Categorical-like instance. Determines probability of first
hidden state in Markov chain. The number of categories must match the number of cate-
gories of transition_distribution as well as both the rightmost batch dimension of transi-
tion_distribution and the rightmost batch dimension of observation_distribution.

• transition_distribution – A Categorical-like instance. The rightmost batch di-
mension indexes the probability distribution of each hidden state conditioned on the previous
hidden state.

• observation_distribution – A tfp.distributions.Distribution-like instance. The
rightmost batch dimension indexes the distribution of each observation conditioned on the
corresponding hidden state.

• num_steps – The number of steps taken in Markov chain. A python int.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class. Default value: “Hidden-
MarkovModel”.

Raises

• ValueError – if num_steps is not at least 1.

56 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• ValueError – if initial_distribution does not have scalar event_shape.

• ValueError – if transition_distribution does not have scalar event_shape.

• ValueError – if transition_distribution and observation_distribution are fully defined
but don’t have matching rightmost dimension.

inferpy.models.random_variable.Horseshoe(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Horseshoe.

See Horseshoe for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a Horseshoe distribution with scale.

Parameters

• scale – Floating point tensor; the scales of the distribution(s). Must contain only positive
values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False (i.e., do not validate args).

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class. Default value: ‘Horseshoe’.

inferpy.models.random_variable.Independent(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Independent.

See Independent for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a Independent distribution.

8.1. Subpackages 57

InferPy Documentation, Release 1.0

Parameters

• distribution – The base distribution instance to transform. Typically an instance of
Distribution.

• reinterpreted_batch_ndims – Scalar, integer number of rightmost batch dims
which will be regarded as event dims. When None all but the first batch axis (batch axis
0) will be transferred to event dimensions (analogous to tf.layers.flatten).

• validate_args – Python bool. Whether to validate input with asserts. If validate_args
is False, and the inputs are invalid, correct behavior is not guaranteed.

• name – The name for ops managed by the distribution. Default value: Independent +
distribution.name.

Raises ValueError – if reinterpreted_batch_ndims exceeds distribution.batch_ndims

inferpy.models.random_variable.InverseGamma(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for InverseGamma.

See InverseGamma for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct InverseGamma with concentration and scale parameters. (deprecated arguments)

Warning: SOME ARGUMENTS ARE DEPRECATED: (rate). They will be removed after 2019-05-08. In-
structions for updating: The rate parameter is deprecated. Use scale instead.The rate parameter was always
interpreted as a scale parameter, but erroneously misnamed.

The parameters concentration and scale must be shaped in a way that supports broadcasting (e.g. concentration
+ scale is a valid operation).

Parameters

• concentration – Floating point tensor, the concentration params of the distribution(s).
Must contain only positive values.

• scale – Floating point tensor, the scale params of the distribution(s). Must contain only
positive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• rate – Deprecated (mis-named) alias for scale.

• name – Python str name prefixed to Ops created by this class.

58 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

Raises TypeError – if concentration and scale are different dtypes.

inferpy.models.random_variable.InverseGaussian(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for InverseGaussian.

See InverseGaussian for more details.

Returns RandomVariable.

Original Docstring for Distribution

Constructs inverse Gaussian distribution with loc and concentration.

Parameters

• loc – Floating-point Tensor, the loc params. Must contain only positive values.

• concentration – Floating-point Tensor, the concentration params. Must contain only
positive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False (i.e. do not validate args).

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class. Default value: ‘InverseGaus-
sian’.

inferpy.models.random_variable.JointDistribution(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for JointDistribution.

See JointDistribution for more details.

Returns RandomVariable.

Original Docstring for Distribution

Constructs the Distribution.

This is a private method for subclass use.

8.1. Subpackages 59

InferPy Documentation, Release 1.0

Parameters

• dtype – The type of the event samples. None implies no type-enforcement.

• reparameterization_type – Instance of ReparameterizationType. If
tfd.FULLY_REPARAMETERIZED, this Distribution can be reparameterized in terms
of some standard distribution with a function whose Jacobian is constant for the support of
the standard distribution. If tfd.NOT_REPARAMETERIZED, then no such reparameteriza-
tion is available.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• parameters – Python dict of parameters used to instantiate this Distribution.

• graph_parents – Python list of graph prerequisites of this Distribution.

• name – Python str name prefixed to Ops created by this class. Default: subclass name.

Raises ValueError – if any member of graph_parents is None or not a Tensor.

inferpy.models.random_variable.JointDistributionCoroutine(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for JointDistributionCoroutine.

See JointDistributionCoroutine for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct the JointDistributionCoroutine distribution.

Parameters

• model – A generator that yields a sequence of tfd.Distribution-like instances.

• sample_dtype – Samples from this distribution will be structured like
tf.nest.pack_sequence_as(sample_dtype, list_). sample_dtype is only used for
tf.nest.pack_sequence_as structuring of outputs, never casting (which is the responsi-
bility of the component distributions). Default value: None (i.e., tuple).

• validate_args – Python bool. Whether to validate input with asserts. If validate_args
is False, and the inputs are invalid, correct behavior is not guaranteed. Default value: False.

• name – The name for ops managed by the distribution. Default value: None (i.e., “Joint-
DistributionCoroutine”).

inferpy.models.random_variable.JointDistributionNamed(*args, **kwargs)

60 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for JointDistributionNamed.

See JointDistributionNamed for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct the JointDistributionNamed distribution.

Parameters

• model – Python dict or namedtuple of distribution-making functions each with required
args corresponding only to other keys.

• validate_args – Python bool. Whether to validate input with asserts. If validate_args
is False, and the inputs are invalid, correct behavior is not guaranteed. Default value: False.

• name – The name for ops managed by the distribution. Default value: None (i.e., “Joint-
DistributionNamed”).

inferpy.models.random_variable.JointDistributionSequential(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for JointDistributionSequential.

See JointDistributionSequential for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct the JointDistributionSequential distribution.

Parameters

• model – Python list of either tfd.Distribution instances and/or lambda functions which take
the k previous distributions and returns a new tfd.Distribution instance.

• validate_args – Python bool. Whether to validate input with asserts. If validate_args
is False, and the inputs are invalid, correct behavior is not guaranteed. Default value: False.

• name – The name for ops managed by the distribution. Default value: None (i.e., “Joint-
DistributionSequential”).

8.1. Subpackages 61

InferPy Documentation, Release 1.0

class inferpy.models.random_variable.Kind
Bases: enum.IntEnum

An enumeration.

GLOBAL_HIDDEN = 0

GLOBAL_OBSERVED = 1

LOCAL_HIDDEN = 2

LOCAL_OBSERVED = 3

inferpy.models.random_variable.Kumaraswamy(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Kumaraswamy.

See Kumaraswamy for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Kumaraswamy distributions.

Parameters

• concentration1 – Positive floating-point Tensor indicating mean number of successes;
aka “alpha”. Implies self.dtype and self.batch_shape, i.e., concentration1.shape = [N1, N2,
. . . , Nm] = self.batch_shape.

• concentration0 – Positive floating-point Tensor indicating mean number of failures;
aka “beta”. Otherwise has same semantics as concentration1.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.LKJ(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

62 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

Create a random variable for LKJ.

See LKJ for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct LKJ distributions.

Parameters

• dimension – Python int. The dimension of the correlation matrices to sample.

• concentration – float or double Tensor. The positive concentration parameter of the
LKJ distributions. The pdf of a sample matrix X is proportional to det(X) ** (concentration
- 1).

• input_output_cholesky – Python bool. If True, functions whose input or output
have the semantics of samples assume inputs are in Cholesky form and return outputs in
Cholesky form. In particular, if this flag is True, input to log_prob is presumed of Cholesky
form and output from sample is of Cholesky form. Setting this argument to True is purely
a computational optimization and does not change the underlying distribution. Addition-
ally, validation checks which are only defined on the multiplied-out form are omitted, even
if validate_args is True. Default value: False (i.e., input/output does not have Cholesky
semantics).

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value NaN to indicate the result is undefined. When False, an exception is
raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – If dimension is negative.

inferpy.models.random_variable.Laplace(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Laplace.

See Laplace for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Laplace distribution with parameters loc and scale.

The parameters loc and scale must be shaped in a way that supports broadcasting (e.g., loc / scale is a valid
operation).

Parameters

8.1. Subpackages 63

InferPy Documentation, Release 1.0

• loc – Floating point tensor which characterizes the location (center) of the distribution.

• scale – Positive floating point tensor which characterizes the spread of the distribution.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if loc and scale are of different dtype.

inferpy.models.random_variable.LinearGaussianStateSpaceModel(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for LinearGaussianStateSpaceModel.

See LinearGaussianStateSpaceModel for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a ‘LinearGaussianStateSpaceModel.

Parameters

• num_timesteps – Integer Tensor total number of timesteps.

• transition_matrix – A transition operator, represented by a Tensor or LinearOperator
of shape [latent_size, latent_size], or by a callable taking as argument a scalar integer Tensor
t and returning a Tensor or LinearOperator representing the transition operator from latent
state at time t to time t + 1.

• transition_noise – An instance of tfd.MultivariateNormalLinearOperator with event
shape [latent_size], representing the mean and covariance of the transition noise model, or
a callable taking as argument a scalar integer Tensor t and returning such a distribution
representing the noise in the transition from time t to time t + 1.

• observation_matrix – An observation operator, represented by a Tensor or LinearOp-
erator of shape [observation_size, latent_size], or by a callable taking as argument a scalar
integer Tensor t and returning a timestep-specific Tensor or LinearOperator.

• observation_noise – An instance of tfd.MultivariateNormalLinearOperator with
event shape [observation_size], representing the mean and covariance of the observation
noise model, or a callable taking as argument a scalar integer Tensor t and returning a
timestep-specific noise model.

• initial_state_prior – An instance of MultivariateNormalLinearOperator repre-
senting the prior distribution on latent states; must have event shape [latent_size].

64 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• initial_step – optional int specifying the time of the first modeled timestep. This
is added as an offset when passing timesteps t to (optional) callables specifying timestep-
specific transition and observation models.

• validate_args – Python bool, default False. Whether to validate input with asserts. If
validate_args is False, and the inputs are invalid, correct behavior is not guaranteed.

• allow_nan_stats – Python bool, default True. If False, raise an exception if a statistic
(e.g. mean/mode/etc. . .) is undefined for any batch member If True, batch members with
valid parameters leading to undefined statistics will return NaN for this statistic.

• name – The name to give Ops created by the initializer.

inferpy.models.random_variable.LogNormal(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for LogNormal.

See LogNormal for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a log-normal distribution.

The LogNormal distribution models positive-valued random variables whose logarithm is normally distributed
with mean loc and standard deviation scale. It is constructed as the exponential transformation of a Normal
distribution.

Parameters

• loc – Floating-point Tensor; the means of the underlying Normal distribution(s).

• scale – Floating-point Tensor; the stddevs of the underlying Normal distribution(s).

• validate_args – Python bool, default False. Whether to validate input with asserts. If
validate_args is False, and the inputs are invalid, correct behavior is not guaranteed.

• allow_nan_stats – Python bool, default True. If False, raise an exception if a statistic
(e.g. mean/mode/etc. . .) is undefined for any batch member If True, batch members with
valid parameters leading to undefined statistics will return NaN for this statistic.

• name – The name to give Ops created by the initializer.

inferpy.models.random_variable.Logistic(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

8.1. Subpackages 65

InferPy Documentation, Release 1.0

Random Variable information:

Create a random variable for Logistic.

See Logistic for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Logistic distributions with mean and scale loc and scale.

The parameters loc and scale must be shaped in a way that supports broadcasting (e.g. loc + scale is a valid
operation).

Parameters

• loc – Floating point tensor, the means of the distribution(s).

• scale – Floating point tensor, the scales of the distribution(s). Must contain only positive
values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – The name to give Ops created by the initializer.

Raises TypeError – if loc and scale are different dtypes.

inferpy.models.random_variable.Mixture(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Mixture.

See Mixture for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a Mixture distribution.

A Mixture is defined by a Categorical (cat, representing the mixture probabilities) and a list of Distribution
objects all having matching dtype, batch shape, event shape, and continuity properties (the components).

The num_classes of cat must be possible to infer at graph construction time and match len(components).

Parameters

• cat – A Categorical distribution instance, representing the probabilities of distributions.

• components – A list or tuple of Distribution instances. Each instance must have the same
type, be defined on the same domain, and have matching event_shape and batch_shape.

66 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• validate_args – Python bool, default False. If True, raise a runtime error if batch or
event ranks are inconsistent between cat and any of the distributions. This is only checked
if the ranks cannot be determined statically at graph construction time.

• allow_nan_stats – Boolean, default True. If False, raise an exception if a statistic (e.g.
mean/mode/etc. . .) is undefined for any

batch member. If True, batch members with valid parameters leading to undefined
statistics will return NaN for this statistic.

• use_static_graph – Calls to sample will not rely on dynamic tensor indexing, al-
lowing for some static graph compilation optimizations, but at the expense of sampling all
underlying distributions in the mixture. (Possibly useful when running on TPUs). Default
value: False (i.e., use dynamic indexing).

• name – A name for this distribution (optional).

Raises

• TypeError – If cat is not a Categorical, or components is not a list or tuple, or the elements
of components are not instances of Distribution, or do not have matching dtype.

• ValueError – If components is an empty list or tuple, or its elements do not have a
statically known event rank. If cat.num_classes cannot be inferred at graph creation time,
or the constant value of cat.num_classes is not equal to len(components), or all components
and cat do not have matching static batch shapes, or all components do not have matching
static event shapes.

inferpy.models.random_variable.MixtureSameFamily(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MixtureSameFamily.

See MixtureSameFamily for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a MixtureSameFamily distribution.

Parameters

• mixture_distribution – tfp.distributions.Categorical-like instance. Manages the
probability of selecting components. The number of categories must match the rightmost
batch dimension of the components_distribution. Must have either scalar batch_shape or
batch_shape matching components_distribution.batch_shape[:-1].

• components_distribution – tfp.distributions.Distribution-like instance. Right-most
batch dimension indexes components.

• reparameterize – Python bool, default False. Whether to reparameterize samples of
the distribution using implicit reparameterization gradients [(Figurnov et al., 2018)][1]. The
gradients for the mixture logits are equivalent to the ones described by [(Graves, 2016)][2].

8.1. Subpackages 67

InferPy Documentation, Release 1.0

The gradients for the components parameters are also computed using implicit reparameter-
ization (as opposed to ancestral sampling), meaning that all components are updated every
step. Only works when:

(1) components_distribution is fully reparameterized;

(2) components_distribution is either a scalar distribution or fully factorized
(tfd.Independent applied to a scalar distribution); (3) batch shape has a known rank.

Experimental, may be slow and produce infs/NaNs.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises

• ValueError – if not dtype_util.is_integer(mixture_distribution.dtype).

• ValueError – if mixture_distribution does not have scalar event_shape.

• ValueError – if mixture_distribution.batch_shape and
components_distribution.batch_shape[:-1] are both fully defined and the former is
neither scalar nor equal to the latter.

• ValueError – if mixture_distribution categories does not equal components_distribution
rightmost batch shape.

References

[1]: Michael Figurnov, Shakir Mohamed and Andriy Mnih. Implicit reparameterization gradients. In
Neural Information Processing Systems, 2018. https://arxiv.org/abs/1805.08498

[2]: Alex Graves. Stochastic Backpropagation through Mixture Density Distributions. _arXiv_, 2016.
https://arxiv.org/abs/1607.05690

inferpy.models.random_variable.Multinomial(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Multinomial.

See Multinomial for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Multinomial distributions.

Parameters

68 Chapter 8. inferpy package

https://arxiv.org/abs/1805.08498
https://arxiv.org/abs/1607.05690

InferPy Documentation, Release 1.0

• total_count – Non-negative floating point tensor with shape broadcastable to [N1,. . . ,
Nm] with m >= 0. Defines this as a batch of N1 x . . . x Nm different Multinomial distribu-
tions. Its components should be equal to integer values.

• logits – Floating point tensor representing unnormalized log-probabilities of a positive
event with shape broadcastable to [N1,. . . , Nm, K] m >= 0, and the same dtype as to-
tal_count. Defines this as a batch of N1 x . . . x Nm different K class Multinomial distribu-
tions. Only one of logits or probs should be passed in.

• probs – Positive floating point tensor with shape broadcastable to [N1,. . . , Nm, K] m >=
0 and same dtype as total_count. Defines this as a batch of N1 x . . . x Nm different K class
Multinomial distributions. probs’s components in the last portion of its shape should sum to
1. Only one of logits or probs should be passed in.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.MultivariateNormalDiag(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalDiag.

See MultivariateNormalDiag for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale arguments.

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc (if
provided) must broadcast with this.

Recall that covariance = scale @ scale.T. A (non-batch) scale matrix is:

`none scale = diag(scale_diag + scale_identity_multiplier * ones(k)) `

where:

• scale_diag.shape = [k], and,

• scale_identity_multiplier.shape = [].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then scale is the Identity matrix.

8.1. Subpackages 69

InferPy Documentation, Release 1.0

Parameters

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

• scale_diag – Non-zero, floating-point Tensor representing a diagonal matrix added to
scale. May have shape [B1, . . . , Bb, k], b >= 0, and characterizes b-batches of k x k diagonal
matrices added to scale. When both scale_identity_multiplier and scale_diag are None then
scale is the Identity.

• scale_identity_multiplier – Non-zero, floating-point Tensor representing a
scaled-identity-matrix added to scale. May have shape [B1, . . . , Bb], b >= 0, and
characterizes b-batches of scaled k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is the Identity.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if at most scale_identity_multiplier is specified.

inferpy.models.random_variable.MultivariateNormalDiagPlusLowRank(*args,
**kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalDiagPlusLowRank.

See MultivariateNormalDiagPlusLowRank for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale arguments.

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc (if
provided) must broadcast with this.

Recall that covariance = scale @ scale.T. A (non-batch) scale matrix is:

‘‘‘none scale = diag(scale_diag + scale_identity_multiplier ones(k)) +

scale_perturb_factor @ diag(scale_perturb_diag) @ scale_perturb_factor.T

‘‘‘

where:

• scale_diag.shape = [k],

70 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• scale_identity_multiplier.shape = [],

• scale_perturb_factor.shape = [k, r], typically k >> r, and,

• scale_perturb_diag.shape = [r].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then scale is the Identity matrix.

Parameters

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

• scale_diag – Non-zero, floating-point Tensor representing a diagonal matrix added to
scale. May have shape [B1, . . . , Bb, k], b >= 0, and characterizes b-batches of k x k diagonal
matrices added to scale. When both scale_identity_multiplier and scale_diag are None then
scale is the Identity.

• scale_identity_multiplier – Non-zero, floating-point Tensor representing a
scaled-identity-matrix added to scale. May have shape [B1, . . . , Bb], b >= 0, and
characterizes b-batches of scaled k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is the Identity.

• scale_perturb_factor – Floating-point Tensor representing a rank-r perturbation
added to scale. May have shape [B1, . . . , Bb, k, r], b >= 0, and characterizes b-batches of
rank-r updates to scale. When None, no rank-r update is added to scale.

• scale_perturb_diag – Floating-point Tensor representing a diagonal matrix inside
the rank-r perturbation added to scale. May have shape [B1, . . . , Bb, r], b >= 0, and
characterizes b-batches of r x r diagonal matrices inside the perturbation added to scale.
When None, an identity matrix is used inside the perturbation. Can only be specified if
scale_perturb_factor is also specified.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if at most scale_identity_multiplier is specified.

inferpy.models.random_variable.MultivariateNormalDiagWithSoftplusScale(*args,
**kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalDiagWithSoftplusScale.

See MultivariateNormalDiagWithSoftplusScale for more details.

8.1. Subpackages 71

InferPy Documentation, Release 1.0

Returns RandomVariable.

Original Docstring for Distribution

DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2019-06-05. Instructions for
updating: MultivariateNormalDiagWithSoftplusScale is deprecated, use MultivariateNormalDiag(loc=loc,
scale_diag=tf.nn.softplus(scale_diag)) instead.

inferpy.models.random_variable.MultivariateNormalFullCovariance(*args,
**kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalFullCovariance.

See MultivariateNormalFullCovariance for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and covariance_matrix arguments.

The event_shape is given by last dimension of the matrix implied by covariance_matrix. The last dimension of
loc (if provided) must broadcast with this.

A non-batch covariance_matrix matrix is a k x k symmetric positive definite matrix. In other words it is (real)
symmetric with all eigenvalues strictly positive.

Additional leading dimensions (if any) will index batches.

Parameters

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

• covariance_matrix – Floating-point, symmetric positive definite Tensor of same
dtype as loc. The strict upper triangle of covariance_matrix is ignored, so if covari-
ance_matrix is not symmetric no error will be raised (unless validate_args is True). co-
variance_matrix has shape [B1, . . . , Bb, k, k] where b >= 0 and k is the event size.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if neither loc nor covariance_matrix are specified.

72 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

inferpy.models.random_variable.MultivariateNormalLinearOperator(*args,
**kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalLinearOperator.

See MultivariateNormalLinearOperator for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale arguments.

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc (if
provided) must broadcast with this.

Recall that covariance = scale @ scale.T.

Additional leading dimensions (if any) will index batches.

Parameters

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

• scale – Instance of LinearOperator with same dtype as loc and shape [B1, . . . , Bb, k, k].

• validate_args – Python bool, default False. Whether to validate input with asserts. If
validate_args is False, and the inputs are invalid, correct behavior is not guaranteed.

• allow_nan_stats – Python bool, default True. If False, raise an exception if a statistic
(e.g. mean/mode/etc. . .) is undefined for any batch member If True, batch members with
valid parameters leading to undefined statistics will return NaN for this statistic.

• name – The name to give Ops created by the initializer.

Raises

• ValueError – if scale is unspecified.

• TypeError – if not scale.dtype.is_floating

inferpy.models.random_variable.MultivariateNormalTriL(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

8.1. Subpackages 73

InferPy Documentation, Release 1.0

Create a random variable for MultivariateNormalTriL.

See MultivariateNormalTriL for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale arguments.

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc (if
provided) must broadcast with this.

Recall that covariance = scale @ scale.T. A (non-batch) scale matrix is:

`none scale = scale_tril `

where scale_tril is lower-triangular k x k matrix with non-zero diagonal, i.e., tf.diag_part(scale_tril) != 0.

Additional leading dimensions (if any) will index batches.

Parameters

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

• scale_tril – Floating-point, lower-triangular Tensor with non-zero diagonal elements.
scale_tril has shape [B1, . . . , Bb, k, k] where b >= 0 and k is the event size.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if neither loc nor scale_tril are specified.

inferpy.models.random_variable.MultivariateStudentTLinearOperator(*args,
**kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateStudentTLinearOperator.

See MultivariateStudentTLinearOperator for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Multivariate Student’s t-distribution on R^k.

The batch_shape is the broadcast shape between df, loc and scale arguments.

74 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc must
broadcast with this.

Additional leading dimensions (if any) will index batches.

Parameters

• df – A positive floating-point Tensor. Has shape [B1, . . . , Bb] where b >= 0.

• loc – Floating-point Tensor. Has shape [B1, . . . , Bb, k] where k is the event size.

• scale – Instance of LinearOperator with a floating dtype and shape [B1, . . . , Bb, k, k].

• validate_args – Python bool, default False. Whether to validate input with asserts. If
validate_args is False, and the inputs are invalid, correct behavior is not guaranteed.

• allow_nan_stats – Python bool, default True. If False, raise an exception if a statistic
(e.g. mean/variance/etc. . .) is undefined for any batch member If True, batch members with
valid parameters leading to undefined statistics will return NaN for this statistic.

• name – The name to give Ops created by the initializer.

Raises

• TypeError – if not scale.dtype.is_floating.

• ValueError – if not scale.is_positive_definite.

inferpy.models.random_variable.NegativeBinomial(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for NegativeBinomial.

See NegativeBinomial for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct NegativeBinomial distributions.

Parameters

• total_count – Non-negative floating-point Tensor with shape broadcastable to [B1,. . . ,
Bb] with b >= 0 and the same dtype as probs or logits. Defines this as a batch of N1 x
. . . x Nm different Negative Binomial distributions. In practice, this represents the number
of negative Bernoulli trials to stop at (the total_count of failures), but this is still a valid
distribution when total_count is a non-integer.

• logits – Floating-point Tensor with shape broadcastable to [B1, . . . , Bb] where b >= 0
indicates the number of batch dimensions. Each entry represents logits for the probability
of success for independent Negative Binomial distributions and must be in the open interval
(-inf, inf). Only one of logits or probs should be specified.

• probs – Positive floating-point Tensor with shape broadcastable to [B1, . . . , Bb] where b
>= 0 indicates the number of batch dimensions. Each entry represents the probability of

8.1. Subpackages 75

InferPy Documentation, Release 1.0

success for independent Negative Binomial distributions and must be in the open interval
(0, 1). Only one of logits or probs should be specified.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.Normal(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Normal.

See Normal for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Normal distributions with mean and stddev loc and scale.

The parameters loc and scale must be shaped in a way that supports broadcasting (e.g. loc + scale is a valid
operation).

Parameters

• loc – Floating point tensor; the means of the distribution(s).

• scale – Floating point tensor; the stddevs of the distribution(s). Must contain only positive
values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if loc and scale have different dtype.

inferpy.models.random_variable.OneHotCategorical(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

76 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for OneHotCategorical.

See OneHotCategorical for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize OneHotCategorical distributions using class log-probabilities.

Parameters

• logits – An N-D Tensor, N >= 1, representing the log probabilities of a set of Categorical
distributions. The first N - 1 dimensions index into a batch of independent distributions and
the last dimension represents a vector of logits for each class. Only one of logits or probs
should be passed in.

• probs – An N-D Tensor, N >= 1, representing the probabilities of a set of Categorical
distributions. The first N - 1 dimensions index into a batch of independent distributions and
the last dimension represents a vector of probabilities for each class. Only one of logits or
probs should be passed in.

• dtype – The type of the event samples (default: int32).

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.Pareto(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Pareto.

See Pareto for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Pareto distribution with concentration and scale.

Parameters

• concentration – Floating point tensor. Must contain only positive values.

• scale – Floating point tensor, equivalent to mode. scale also restricts the domain of this
distribution to be in [scale, inf). Must contain only positive values. Default value: 1.

8.1. Subpackages 77

InferPy Documentation, Release 1.0

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False (i.e. do not validate args).

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class. Default value: ‘Pareto’.

inferpy.models.random_variable.Poisson(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Poisson.

See Poisson for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Poisson distributions.

Parameters

• rate – Floating point tensor, the rate parameter. rate must be positive. Must specify exactly
one of rate and log_rate.

• log_rate – Floating point tensor, the log of the rate parameter. Must specify exactly one
of rate and log_rate.

• interpolate_nondiscrete – Python bool. When False, log_prob returns -inf (and
prob returns 0) for non-integer inputs. When True, log_prob evaluates the continuous func-
tion k * log_rate - lgamma(k+1) - rate, which matches the Poisson pmf at integer arguments
k (note that this function is not itself a normalized probability log-density). Default value:
True.

• validate_args – Python bool. When True distribution parameters are checked for
validity despite possibly degrading runtime performance. When False invalid inputs may
silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool. When True, statistics (e.g., mean, mode, variance)
use the value “NaN” to indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class.

Raises

• ValueError – if none or both of rate, log_rate are specified.

• TypeError – if rate is not a float-type.

• TypeError – if log_rate is not a float-type.

78 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

inferpy.models.random_variable.PoissonLogNormalQuadratureCompound(*args,
**kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for PoissonLogNormalQuadratureCompound.

See PoissonLogNormalQuadratureCompound for more details.

Returns RandomVariable.

Original Docstring for Distribution

Constructs the PoissonLogNormalQuadratureCompound‘.

Note: probs returned by (optional) quadrature_fn are presumed to be either a length-quadrature_size vector or a
batch of vectors in 1-to-1 correspondence with the returned grid. (I.e., broadcasting is only partially supported.)

Parameters

• loc – float-like (batch of) scalar Tensor; the location parameter of the LogNormal prior.

• scale – float-like (batch of) scalar Tensor; the scale parameter of the LogNormal prior.

• quadrature_size – Python int scalar representing the number of quadrature points.

• quadrature_fn – Python callable taking loc, scale, quadrature_size, validate_args and
returning tuple(grid, probs) representing the LogNormal grid and corresponding normalized
weight. normalized) weight. Default value: quadrature_scheme_lognormal_quantiles.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if quadrature_grid and quadrature_probs have different base dtype.

inferpy.models.random_variable.QuantizedDistribution(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for QuantizedDistribution.

See QuantizedDistribution for more details.

8.1. Subpackages 79

InferPy Documentation, Release 1.0

Returns RandomVariable.

Original Docstring for Distribution

Construct a Quantized Distribution representing Y = ceiling(X).

Some properties are inherited from the distribution defining X. Example: allow_nan_stats is determined for this
QuantizedDistribution by reading the distribution.

Parameters

• distribution – The base distribution class to transform. Typically an instance of Dis-
tribution.

• low – Tensor with same dtype as this distribution and shape able to be added to samples.
Should be a whole number. Default None. If provided, base distribution’s prob should be
defined at low.

• high – Tensor with same dtype as this distribution and shape able to be added to samples.
Should be a whole number. Default None. If provided, base distribution’s prob should be
defined at high - 1. high must be strictly greater than low.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• name – Python str name prefixed to Ops created by this class.

Raises

• TypeError – If dist_cls is not a subclass of Distribution or continuous.

• NotImplementedError – If the base distribution does not implement cdf.

class inferpy.models.random_variable.RandomVariable(var, name, is_datamodel,
ed_cls, var_args, var_kwargs,
sample_shape, is_observed,
observed_value)

Bases: object

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

• It creates a variable generator. It must be a function without parameters, that creates a new Random
Variable from edward2. It is used to define edward2 models as functions. Also, it is useful to define
models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

build_in_session(sess)
Allow to build a copy of the random variable but running previously each parameter in the tf session. This
way, it uses the value of each tf variable or placeholder as a tensor, not as a tf variable or placeholder. If
this random variable is a ed random variable directly assigned to .var, we cannot re-create it. In this case,
return self. :param sess: tf session used to run each parameter used to build this random variable. :returns:
the random variable object

copy()
Makes a of the current random variable where the distribution parameters are fixed. :return: new object of
class RandomVariable

property type

inferpy.models.random_variable.RelaxedBernoulli(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

80 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for RelaxedBernoulli.

See RelaxedBernoulli for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct RelaxedBernoulli distributions.

Parameters

• temperature – An 0-D Tensor, representing the temperature of a set of RelaxedBernoulli
distributions. The temperature should be positive.

• logits – An N-D Tensor representing the log-odds of a positive event. Each entry in the
Tensor parametrizes an independent RelaxedBernoulli distribution where the probability of
an event is sigmoid(logits). Only one of logits or probs should be passed in.

• probs – An N-D Tensor representing the probability of a positive event. Each entry in
the Tensor parameterizes an independent Bernoulli distribution. Only one of logits or probs
should be passed in.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – If both probs and logits are passed, or if neither.

inferpy.models.random_variable.RelaxedOneHotCategorical(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for RelaxedOneHotCategorical.

See RelaxedOneHotCategorical for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize RelaxedOneHotCategorical using class log-probabilities.

Parameters

8.1. Subpackages 81

InferPy Documentation, Release 1.0

• temperature – An 0-D Tensor, representing the temperature of a set of RelaxedOneHot-
Categorical distributions. The temperature should be positive.

• logits – An N-D Tensor, N >= 1, representing the log probabilities of a set of Relaxe-
dOneHotCategorical distributions. The first N - 1 dimensions index into a batch of indepen-
dent distributions and the last dimension represents a vector of logits for each class. Only
one of logits or probs should be passed in.

• probs – An N-D Tensor, N >= 1, representing the probabilities of a set of RelaxedOne-
HotCategorical distributions. The first N - 1 dimensions index into a batch of independent
distributions and the last dimension represents a vector of probabilities for each class. Only
one of logits or probs should be passed in.

• validate_args – Unused in this distribution.

• allow_nan_stats – Python bool, default True. If False, raise an exception if a statistic
(e.g. mean/mode/etc. . .) is undefined for any batch member. If True, batch members with
valid parameters leading to undefined statistics will return NaN for this statistic.

• name – A name for this distribution (optional).

inferpy.models.random_variable.Sample(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Sample.

See Sample for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct the Sample distribution.

Parameters

• distribution – The base distribution instance to transform. Typically an instance of
Distribution.

• sample_shape – int scalar or vector Tensor representing the shape of a single sample.

• validate_args – Python bool. Whether to validate input with asserts. If validate_args
is False, and the inputs are invalid, correct behavior is not guaranteed.

• name – The name for ops managed by the distribution. Default value: None (i.e., ‘Sample’
+ distribution.name).

inferpy.models.random_variable.SinhArcsinh(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

82 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for SinhArcsinh.

See SinhArcsinh for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct SinhArcsinh distribution on (-inf, inf).

Arguments (loc, scale, skewness, tailweight) must have broadcastable shape (indexing batch dimensions). They
must all have the same dtype.

Parameters

• loc – Floating-point Tensor.

• scale – Tensor of same dtype as loc.

• skewness – Skewness parameter. Default is 0.0 (no skew).

• tailweight – Tailweight parameter. Default is 1.0 (unchanged tailweight)

• distribution – tf.Distribution-like instance. Distribution that is transformed to produce
this distribution. Default is tfd.Normal(0., 1.). Must be a scalar-batch, scalar-event distri-
bution. Typically distribution.reparameterization_type = FULLY_REPARAMETERIZED or
it is a function of non-trainable parameters. WARNING: If you backprop through a Sin-
hArcsinh sample and distribution is not FULLY_REPARAMETERIZED yet is a function of
trainable variables, then the gradient will be incorrect!

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.StudentT(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for StudentT.

See StudentT for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Student’s t distributions.

8.1. Subpackages 83

InferPy Documentation, Release 1.0

The distributions have degree of freedom df, mean loc, and scale scale.

The parameters df, loc, and scale must be shaped in a way that supports broadcasting (e.g. df + loc + scale is a
valid operation).

Parameters

• df – Floating-point Tensor. The degrees of freedom of the distribution(s). df must contain
only positive values.

• loc – Floating-point Tensor. The mean(s) of the distribution(s).

• scale – Floating-point Tensor. The scaling factor(s) for the distribution(s). Note that scale
is not technically the standard deviation of this distribution but has semantics more similar
to standard deviation than variance.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if loc and scale are different dtypes.

inferpy.models.random_variable.StudentTProcess(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for StudentTProcess.

See StudentTProcess for more details.

Returns RandomVariable.

Original Docstring for Distribution

Instantiate a StudentTProcess Distribution.

Parameters

• df – Positive Floating-point Tensor representing the degrees of freedom. Must be greater
than 2.

• kernel – PositiveSemidefiniteKernel-like instance representing the TP’s covariance func-
tion.

• index_points – float Tensor representing finite (batch of) vector(s) of points in the in-
dex set over which the TP is defined. Shape has the form [b1, . . . , bB, e, f1, . . . , fF] where
F is the number of feature dimensions and must equal kernel.feature_ndims and e is the
number (size) of index points in each batch. Ultimately this distribution corresponds to a
e-dimensional multivariate Student’s T. The batch shape must be broadcastable with ker-
nel.batch_shape and any batch dims yielded by mean_fn.

84 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• mean_fn – Python callable that acts on index_points to produce a (batch of) vector(s) of
mean values at index_points. Takes a Tensor of shape [b1, . . . , bB, f1, . . . , fF] and returns
a Tensor whose shape is broadcastable with [b1, . . . , bB]. Default value: None implies
constant zero function.

• jitter – float scalar Tensor added to the diagonal of the covariance matrix to ensure
positive definiteness of the covariance matrix. Default value: 1e-6.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: False.

• name – Python str name prefixed to Ops created by this class. Default value: “StudentTPro-
cess”.

Raises ValueError – if mean_fn is not None and is not callable.

inferpy.models.random_variable.TransformedDistribution(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for TransformedDistribution.

See TransformedDistribution for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a Transformed Distribution.

Parameters

• distribution – The base distribution instance to transform. Typically an instance of
Distribution.

• bijector – The object responsible for calculating the transformation. Typically an in-
stance of Bijector.

• batch_shape – integer vector Tensor which overrides distribution batch_shape; valid
only if distribution.is_scalar_batch().

• event_shape – integer vector Tensor which overrides distribution event_shape; valid
only if distribution.is_scalar_event().

• kwargs_split_fn – Python callable which takes a kwargs dict and returns a tuple of
kwargs dict‘s for each of the ‘distribution and bijector parameters respectively. Default
value: _default_kwargs_split_fn (i.e.,

‘lambda kwargs: (kwargs.get(‘distribution_kwargs’, {}),
kwargs.get(‘bijector_kwargs’, {}))‘)

8.1. Subpackages 85

InferPy Documentation, Release 1.0

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• parameters – Locals dict captured by subclass constructor, to be used for copy/slice
re-instantiation operations.

• name – Python str name prefixed to Ops created by this class. Default: bijector.name +
distribution.name.

inferpy.models.random_variable.Triangular(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Triangular.

See Triangular for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Triangular distributions.

Parameters

• low – Floating point tensor, lower boundary of the output interval. Must have low < high.
Default value: 0.

• high – Floating point tensor, upper boundary of the output interval. Must have low < high.
Default value: 1.

• peak – Floating point tensor, mode of the output interval. Must have low <= peak and peak
<= high. Default value: 0.5.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class. Default value: ‘Triangular’.

Raises InvalidArgumentError – if validate_args=True and one of the following is True: *
low >= high. * peak > high. * low > peak.

inferpy.models.random_variable.TruncatedNormal(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

86 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for TruncatedNormal.

See TruncatedNormal for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct TruncatedNormal.

All parameters of the distribution will be broadcast to the same shape, so the resulting distribution will have a
batch_shape of the broadcast shape of all parameters.

Parameters

• loc – Floating point tensor; the mean of the normal distribution(s) (note that the mean of
the resulting distribution will be different since it is modified by the bounds).

• scale – Floating point tensor; the std deviation of the normal distribution(s).

• low – float Tensor representing lower bound of the distribution’s support. Must be such that
low < high.

• high – float Tensor representing upper bound of the distribution’s support. Must be such
that low < high.

• validate_args – Python bool, default False. When True distribution parameters are
checked at run-time.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.Uniform(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Uniform.

See Uniform for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Uniform distributions.

Parameters

• low – Floating point tensor, lower boundary of the output interval. Must have low < high.

• high – Floating point tensor, upper boundary of the output interval. Must have low < high.

8.1. Subpackages 87

InferPy Documentation, Release 1.0

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises InvalidArgumentError – if low >= high and validate_args=False.

inferpy.models.random_variable.VariationalGaussianProcess(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VariationalGaussianProcess.

See VariationalGaussianProcess for more details.

Returns RandomVariable.

Original Docstring for Distribution

Instantiate a VariationalGaussianProcess Distribution.

Parameters

• kernel – PositiveSemidefiniteKernel-like instance representing the GP’s covariance func-
tion.

• index_points – float Tensor representing finite (batch of) vector(s) of points in the index
set over which the VGP is defined. Shape has the form [b1, . . . , bB, e1, f1, . . . , fF] where
F is the number of feature dimensions and must equal kernel.feature_ndims and e1 is the
number (size) of index points in each batch (we denote it e1 to distinguish it from the numer
of inducing index points, denoted e2 below). Ultimately the VariationalGaussianProcess
distribution corresponds to an e1-dimensional multivariate normal. The batch shape must
be broadcastable with kernel.batch_shape, the batch shape of inducing_index_points, and
any batch dims yielded by mean_fn.

• inducing_index_points – float Tensor of locations of inducing points in the index
set. Shape has the form [b1, . . . , bB, e2, f1, . . . , fF], just like index_points. The batch shape
components needn’t be identical to those of index_points, but must be broadcast compatible
with them.

• variational_inducing_observations_loc – float Tensor; the mean of the
(full-rank Gaussian) variational posterior over function values at the inducing points, condi-
tional on observed data. Shape has the form [b1, . . . , bB, e2], where b1, . . . , bB is broadcast
compatible with other parameters’ batch shapes, and e2 is the number of inducing points.

• variational_inducing_observations_scale – float Tensor; the scale matrix
of the (full-rank Gaussian) variational posterior over function values at the inducing points,
conditional on observed data. Shape has the form [b1, . . . , bB, e2, e2], where b1, . . . , bB is
broadcast compatible with other parameters and e2 is the number of inducing points.

88 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• mean_fn – Python callable that acts on index points to produce a (batch of) vector(s) of
mean values at those index points. Takes a Tensor of shape [b1, . . . , bB, f1, . . . , fF] and
returns a Tensor whose shape is (broadcastable with) [b1, . . . , bB]. Default value: None
implies constant zero function.

• observation_noise_variance – float Tensor representing the variance of the noise
in the Normal likelihood distribution of the model. May be batched, in which case the
batch shape must be broadcastable with the shapes of all other batched parameters (ker-
nel.batch_shape, index_points, etc.). Default value: 0.

• predictive_noise_variance – float Tensor representing additional variance in the
posterior predictive model. If None, we simply re-use observation_noise_variance for the
posterior predictive noise. If set explicitly, however, we use the given value. This allows us,
for example, to omit predictive noise variance (by setting this to zero) to obtain noiseless
posterior predictions of function values, conditioned on noisy observations.

• jitter – float scalar Tensor added to the diagonal of the covariance matrix to ensure
positive definiteness of the covariance matrix. Default value: 1e-6.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: False.

• name – Python str name prefixed to Ops created by this class. Default value: “Variational-
GaussianProcess”.

Raises ValueError – if mean_fn is not None and is not callable.

inferpy.models.random_variable.VectorDeterministic(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorDeterministic.

See VectorDeterministic for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a VectorDeterministic distribution on R^k, for k >= 0.

Note that there is only one point in R^0, the “point” []. So if k = 0 then self.prob([]) == 1.

The atol and rtol parameters allow for some slack in pmf computations, e.g. due to floating-point error.

‘‘‘ pmf(x; loc)

= 1, if All[Abs(x - loc) <= atol + rtol * Abs(loc)], = 0, otherwise

‘‘‘

8.1. Subpackages 89

InferPy Documentation, Release 1.0

Parameters

• loc – Numeric Tensor of shape [B1, . . . , Bb, k], with b >= 0, k >= 0 The point (or batch
of points) on which this distribution is supported.

• atol – Non-negative Tensor of same dtype as loc and broadcastable shape. The absolute
tolerance for comparing closeness to loc. Default is 0.

• rtol – Non-negative Tensor of same dtype as loc and broadcastable shape. The relative
tolerance for comparing closeness to loc. Default is 0.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.random_variable.VectorDiffeomixture(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorDiffeomixture.

See VectorDiffeomixture for more details.

Returns RandomVariable.

Original Docstring for Distribution

Constructs the VectorDiffeomixture on R^d.

The vector diffeomixture (VDM) approximates the compound distribution

`none p(x) = int p(x | z) p(z) dz, where z is in the K-simplex, and p(x |
z) := p(x | loc=sum_k z[k] loc[k], scale=sum_k z[k] scale[k]) `

Parameters

• mix_loc – float-like Tensor with shape [b1, . . . , bB, K-1]. In terms of samples, larger
mix_loc[. . . , k] ==> Z is more likely to put more weight on its kth component.

• temperature – float-like Tensor. Broadcastable with mix_loc. In terms of samples,
smaller temperature means one component is more likely to dominate. I.e., smaller temper-
ature makes the VDM look more like a standard mixture of K components.

• distribution – tfp.distributions.Distribution-like instance. Distribution from which
d iid samples are used as input to the selected affine transformation. Must be a
scalar-batch, scalar-event distribution. Typically distribution.reparameterization_type =
FULLY_REPARAMETERIZED or it is a function of non-trainable parameters. WARN-
ING: If you backprop through a VectorDiffeomixture sample and the distribution is not
FULLY_REPARAMETERIZED yet is a function of trainable variables, then the gradient
will be incorrect!

90 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• loc – Length-K list of float-type Tensor‘s. The ‘k-th element represents the shift used for
the k-th affine transformation. If the k-th item is None, loc is implicitly 0. When specified,
must have shape [B1, . . . , Bb, d] where b >= 0 and d is the event size.

• scale – Length-K list of LinearOperator‘s. Each should be positive-definite and operate
on a ‘d-dimensional vector space. The k-th element represents the scale used for the k-th
affine transformation. LinearOperator‘s must have shape ‘[B1, . . . , Bb, d, d], b >= 0, i.e.,
characterizes b-batches of d x d matrices

• quadrature_size – Python int scalar representing number of quadrature points. Larger
quadrature_size means q_N(x) better approximates p(x).

• quadrature_fn – Python callable taking normal_loc, normal_scale, quadrature_size,
validate_args and returning tuple(grid, probs) representing the SoftmaxNormal grid
and corresponding normalized weight. normalized) weight. Default value: quadra-
ture_scheme_softmaxnormal_quantiles.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises

• ValueError – if not scale or len(scale) < 2.

• ValueError – if len(loc) != len(scale)

• ValueError – if quadrature_grid_and_probs is not None and
len(quadrature_grid_and_probs[0]) != len(quadrature_grid_and_probs[1])

• ValueError – if validate_args and any not scale.is_positive_definite.

• TypeError – if any scale.dtype != scale[0].dtype.

• TypeError – if any loc.dtype != scale[0].dtype.

• NotImplementedError – if len(scale) != 2.

• ValueError – if not distribution.is_scalar_batch.

• ValueError – if not distribution.is_scalar_event.

inferpy.models.random_variable.VectorExponentialDiag(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorExponentialDiag.

See VectorExponentialDiag for more details.

Returns RandomVariable.

8.1. Subpackages 91

InferPy Documentation, Release 1.0

Original Docstring for Distribution

Construct Vector Exponential distribution supported on a subset of R^k.

The batch_shape is the broadcast shape between loc and scale arguments.

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc (if
provided) must broadcast with this.

Recall that covariance = scale @ scale.T.

`none scale = diag(scale_diag + scale_identity_multiplier * ones(k)) `

where:

• scale_diag.shape = [k], and,

• scale_identity_multiplier.shape = [].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then scale is the Identity matrix.

Parameters

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

• scale_diag – Non-zero, floating-point Tensor representing a diagonal matrix added to
scale. May have shape [B1, . . . , Bb, k], b >= 0, and characterizes b-batches of k x k diagonal
matrices added to scale. When both scale_identity_multiplier and scale_diag are None then
scale is the Identity.

• scale_identity_multiplier – Non-zero, floating-point Tensor representing a
scaled-identity-matrix added to scale. May have shape [B1, . . . , Bb], b >= 0, and
characterizes b-batches of scaled k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is the Identity.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if at most scale_identity_multiplier is specified.

inferpy.models.random_variable.VectorLaplaceDiag(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorLaplaceDiag.

See VectorLaplaceDiag for more details.

92 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

Returns RandomVariable.

Original Docstring for Distribution

Construct Vector Laplace distribution on R^k.

The batch_shape is the broadcast shape between loc and scale arguments.

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc (if
provided) must broadcast with this.

Recall that covariance = 2 * scale @ scale.T.

`none scale = diag(scale_diag + scale_identity_multiplier * ones(k)) `

where:

• scale_diag.shape = [k], and,

• scale_identity_multiplier.shape = [].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then scale is the Identity matrix.

Parameters

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

• scale_diag – Non-zero, floating-point Tensor representing a diagonal matrix added to
scale. May have shape [B1, . . . , Bb, k], b >= 0, and characterizes b-batches of k x k diagonal
matrices added to scale. When both scale_identity_multiplier and scale_diag are None then
scale is the Identity.

• scale_identity_multiplier – Non-zero, floating-point Tensor representing a
scaled-identity-matrix added to scale. May have shape [B1, . . . , Bb], b >= 0, and
characterizes b-batches of scaled k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is the Identity.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if at most scale_identity_multiplier is specified.

inferpy.models.random_variable.VectorSinhArcsinhDiag(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

8.1. Subpackages 93

InferPy Documentation, Release 1.0

Create a random variable for VectorSinhArcsinhDiag.

See VectorSinhArcsinhDiag for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct VectorSinhArcsinhDiag distribution on R^k.

The arguments scale_diag and scale_identity_multiplier combine to define the diagonal scale referred to in this
class docstring:

`none scale = diag(scale_diag + scale_identity_multiplier * ones(k)) `

The batch_shape is the broadcast shape between loc and scale arguments.

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc (if
provided) must broadcast with this

Additional leading dimensions (if any) will index batches.

Parameters

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

• scale_diag – Non-zero, floating-point Tensor representing a diagonal matrix added to
scale. May have shape [B1, . . . , Bb, k], b >= 0, and characterizes b-batches of k x k diagonal
matrices added to scale. When both scale_identity_multiplier and scale_diag are None then
scale is the Identity.

• scale_identity_multiplier – Non-zero, floating-point Tensor representing a
scale-identity-matrix added to scale. May have shape [B1, . . . , Bb], b >= 0, and
characterizes b-batches of scale k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is the Identity.

• skewness – Skewness parameter. floating-point Tensor with shape broadcastable with
event_shape.

• tailweight – Tailweight parameter. floating-point Tensor with shape broadcastable with
event_shape.

• distribution – tf.Distribution-like instance. Distribution from which k iid samples
are used as input to transformation F. Default is tfd.Normal(loc=0., scale=1.). Must be
a scalar-batch, scalar-event distribution. Typically distribution.reparameterization_type =
FULLY_REPARAMETERIZED or it is a function of non-trainable parameters. WARN-
ING: If you backprop through a VectorSinhArcsinhDiag sample and distribution is not
FULLY_REPARAMETERIZED yet is a function of trainable variables, then the gradient
will be incorrect!

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if at most scale_identity_multiplier is specified.

inferpy.models.random_variable.VonMises(*args, **kwargs)

94 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VonMises.

See VonMises for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct von Mises distributions with given location and concentration.

The parameters loc and concentration must be shaped in a way that supports broadcasting (e.g. loc + concen-
tration is a valid operation).

Parameters

• loc – Floating point tensor, the circular means of the distribution(s).

• concentration – Floating point tensor, the level of concentration of the distribution(s)
around loc. Must take non-negative values. concentration = 0 defines a Uniform distribu-
tion, while concentration = +inf indicates a Deterministic distribution at loc.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if loc and concentration are different dtypes.

inferpy.models.random_variable.VonMisesFisher(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VonMisesFisher.

See VonMisesFisher for more details.

Returns RandomVariable.

Original Docstring for Distribution

Creates a new VonMisesFisher instance.

8.1. Subpackages 95

InferPy Documentation, Release 1.0

Parameters

• mean_direction – Floating-point Tensor with shape [B1, . . . Bn, D]. A unit vector
indicating the mode of the distribution, or the unit-normalized direction of the mean. (This
is not in general the mean of the distribution; the mean is not generally in the support of the
distribution.) NOTE: D is currently restricted to <= 5.

• concentration – Floating-point Tensor having batch shape [B1, . . . Bn] broadcastable
with mean_direction. The level of concentration of samples around the mean_direction.
concentration=0 indicates a uniform distribution over the unit hypersphere, and concentra-
tion=+inf indicates a Deterministic distribution (delta function) at mean_direction.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – For known-bad arguments, i.e. unsupported event dimension.

inferpy.models.random_variable.Wishart(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Wishart.

See Wishart for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Wishart distributions.

Parameters

• df – float or double Tensor. Degrees of freedom, must be greater than or equal to dimension
of the scale matrix.

• scale – float or double Tensor. The symmetric positive definite scale matrix of the distri-
bution. Exactly one of scale and ‘scale_tril‘ must be passed.

• scale_tril – float or double Tensor. The Cholesky factorization of the symmetric pos-
itive definite scale matrix of the distribution. Exactly one of scale and ‘scale_tril‘ must be
passed.

• input_output_cholesky – Python bool. If True, functions whose input or output have
the semantics of samples assume inputs are in Cholesky form and return outputs in Cholesky
form. In particular, if this flag is True, input to log_prob is presumed of Cholesky form and
output from sample, mean, and mode are of Cholesky form. Setting this argument to True
is purely a computational optimization and does not change the underlying distribution;

96 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

for instance, mean returns the Cholesky of the mean, not the mean of Cholesky factors.
The variance and stddev methods are unaffected by this flag. Default value: False (i.e.,
input/output does not have Cholesky semantics).

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if zero or both of ‘scale’ and ‘scale_tril’ are passed in.

inferpy.models.random_variable.Zipf(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Zipf.

See Zipf for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Zipf distributions.

Parameters

• power – Float like Tensor representing the power parameter. Must be strictly greater than
1.

• dtype – The dtype of Tensor returned by sample. Default value: tf.int32.

• interpolate_nondiscrete – Python bool. When False, log_prob returns -inf (and
prob returns 0) for non-integer inputs. When True, log_prob evaluates the continuous func-
tion -power log(k) - log(zeta(power)) , which matches the Zipf pmf at integer arguments k
(note that this function is not itself a normalized probability log-density). Default value:
True.

• sample_maximum_iterations – Maximum number of iterations of allowable itera-
tions in sample. When validate_args=True, samples which fail to reach convergence (sub-
ject to this cap) are masked out with self.dtype.min or nan depending on self.dtype.is_integer.
Default value: 100.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: False.

8.1. Subpackages 97

InferPy Documentation, Release 1.0

• name – Python str name prefixed to Ops created by this class. Default value: ‘Zipf’.

Raises TypeError – if power is not float like.

Module contents

inferpy.models.datamodel(size=None)
This context is used to declare a plateau model. Random Variables and Parameters will use a sample_shape
defined by the argument size, or by the data_model.fit. If size is not specify, the default size 1, or the size
specified by fit will be used.

class inferpy.models.Parameter(initial_value, name=None)
Bases: object

Random Variable parameter which can be optimized by an inference mechanism.

inferpy.models.probmodel(builder)
Decorator to create probabilistic models. The function decorated must be a function which declares the Random
Variables in the model. It is not needed that the function returns such variables (we capture them using ed.tape).

inferpy.models.Autoregressive(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Autoregressive.

See Autoregressive for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct an Autoregressive distribution.

Parameters

• distribution_fn – Python callable which constructs a tfd.Distribution-like instance
from a Tensor (e.g., sample0). The function must respect the “autoregressive property”, i.e.,
there exists a permutation of event such that each coordinate is a diffeomorphic function of
on preceding coordinates.

• sample0 – Initial input to distribution_fn; used to build the distribution in __init__ which
in turn specifies this distribution’s properties, e.g., event_shape, batch_shape, dtype. If
unspecified, then distribution_fn should be default constructable.

• num_steps – Number of times distribution_fn is composed from samples, e.g.,
num_steps=2 implies distribution_fn(distribution_fn(sample0).sample(n)).sample().

• validate_args – Python bool. Whether to validate input with asserts. If validate_args
is False, and the inputs are invalid, correct behavior is not guaranteed.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

98 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• name – Python str name prefixed to Ops created by this class. Default value: “Autoregres-
sive”.

Raises

• ValueError – if num_steps and num_elements(distribution_fn(sample0).event_shape)
are both None.

• ValueError – if num_steps < 1.

inferpy.models.BatchReshape(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for BatchReshape.

See BatchReshape for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct BatchReshape distribution.

Parameters

• distribution – The base distribution instance to reshape. Typically an instance of
Distribution.

• batch_shape – Positive int-like vector-shaped Tensor representing the new shape of the
batch dimensions. Up to one dimension may contain -1, meaning the remainder of the batch
size.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – The name to give Ops created by the initializer. Default value: “BatchReshape” +
distribution.name.

Raises

• ValueError – if batch_shape is not a vector.

• ValueError – if batch_shape has non-positive elements.

• ValueError – if batch_shape size is not the same as a distribution.batch_shape size.

inferpy.models.Bernoulli(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

8.1. Subpackages 99

InferPy Documentation, Release 1.0

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Bernoulli.

See Bernoulli for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Bernoulli distributions.

Parameters

• logits – An N-D Tensor representing the log-odds of a 1 event. Each entry in the Ten-
sor parametrizes an independent Bernoulli distribution where the probability of an event is
sigmoid(logits). Only one of logits or probs should be passed in.

• probs – An N-D Tensor representing the probability of a 1 event. Each entry in the Tensor
parameterizes an independent Bernoulli distribution. Only one of logits or probs should be
passed in.

• dtype – The type of the event samples. Default: int32.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – If p and logits are passed, or if neither are passed.

inferpy.models.Beta(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Beta.

See Beta for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Beta distributions.

Parameters

100 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• concentration1 – Positive floating-point Tensor indicating mean number of successes;
aka “alpha”. Implies self.dtype and self.batch_shape, i.e., concentration1.shape = [N1, N2,
. . . , Nm] = self.batch_shape.

• concentration0 – Positive floating-point Tensor indicating mean number of failures;
aka “beta”. Otherwise has same semantics as concentration1.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.Binomial(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Binomial.

See Binomial for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Binomial distributions.

Parameters

• total_count – Non-negative floating point tensor with shape broadcastable to [N1,. . . ,
Nm] with m >= 0 and the same dtype as probs or logits. Defines this as a batch of N1 x . . .
x Nm different Binomial distributions. Its components should be equal to integer values.

• logits – Floating point tensor representing the log-odds of a positive event with shape
broadcastable to [N1,. . . , Nm] m >= 0, and the same dtype as total_count. Each entry
represents logits for the probability of success for independent Binomial distributions. Only
one of logits or probs should be passed in.

• probs – Positive floating point tensor with shape broadcastable to [N1,. . . , Nm] m >= 0,
probs in [0, 1]. Each entry represents the probability of success for independent Binomial
distributions. Only one of logits or probs should be passed in.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

8.1. Subpackages 101

InferPy Documentation, Release 1.0

inferpy.models.Blockwise(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Blockwise.

See Blockwise for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct the Blockwise distribution.

Parameters

• distributions – Python list of tfp.distributions.Distribution instances. All distribu-
tion instances must have the same batch_shape and all must have event_ndims==1, i.e., be
vector-variate distributions.

• dtype_override – samples of distributions will be cast to this dtype. If unspecified, all
distributions must have the same dtype. Default value: None (i.e., do not cast).

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.Categorical(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Categorical.

See Categorical for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize Categorical distributions using class log-probabilities.

Parameters

102 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• logits – An N-D Tensor, N >= 1, representing the log probabilities of a set of Categorical
distributions. The first N - 1 dimensions index into a batch of independent distributions and
the last dimension represents a vector of logits for each class. Only one of logits or probs
should be passed in.

• probs – An N-D Tensor, N >= 1, representing the probabilities of a set of Categorical
distributions. The first N - 1 dimensions index into a batch of independent distributions and
the last dimension represents a vector of probabilities for each class. Only one of logits or
probs should be passed in.

• dtype – The type of the event samples (default: int32).

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.Cauchy(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Cauchy.

See Cauchy for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Cauchy distributions.

The parameters loc and scale must be shaped in a way that supports broadcasting (e.g. loc + scale is a valid
operation).

Parameters

• loc – Floating point tensor; the modes of the distribution(s).

• scale – Floating point tensor; the locations of the distribution(s). Must contain only posi-
tive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

8.1. Subpackages 103

InferPy Documentation, Release 1.0

Raises TypeError – if loc and scale have different dtype.

inferpy.models.Chi(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Chi.

See Chi for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Chi distributions with parameter df.

Parameters

• df – Floating point tensor, the degrees of freedom of the distribution(s). df must contain
only positive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value NaN to indicate the result is undefined. When False, an exception is
raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class. Default value: ‘Chi’.

inferpy.models.Chi2(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Chi2.

See Chi2 for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Chi2 distributions with parameter df.

Parameters

• df – Floating point tensor, the degrees of freedom of the distribution(s). df must contain
only positive values.

104 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.Chi2WithAbsDf(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Chi2WithAbsDf.

See Chi2WithAbsDf for more details.

Returns RandomVariable.

Original Docstring for Distribution

DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2019-06-05. Instructions for updating:
Chi2WithAbsDf is deprecated, use Chi2(df=tf.floor(tf.abs(df))) instead.

inferpy.models.Deterministic(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Deterministic.

See Deterministic for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a scalar Deterministic distribution.

The atol and rtol parameters allow for some slack in pmf, cdf computations, e.g. due to floating-point error.

‘‘‘ pmf(x; loc)

= 1, if Abs(x - loc) <= atol + rtol * Abs(loc), = 0, otherwise.

‘‘‘

Parameters

8.1. Subpackages 105

InferPy Documentation, Release 1.0

• loc – Numeric Tensor of shape [B1, . . . , Bb], with b >= 0. The point (or batch of points)
on which this distribution is supported.

• atol – Non-negative Tensor of same dtype as loc and broadcastable shape. The absolute
tolerance for comparing closeness to loc. Default is 0.

• rtol – Non-negative Tensor of same dtype as loc and broadcastable shape. The relative
tolerance for comparing closeness to loc. Default is 0.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.VectorDeterministic(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorDeterministic.

See VectorDeterministic for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a VectorDeterministic distribution on R^k, for k >= 0.

Note that there is only one point in R^0, the “point” []. So if k = 0 then self.prob([]) == 1.

The atol and rtol parameters allow for some slack in pmf computations, e.g. due to floating-point error.

‘‘‘ pmf(x; loc)

= 1, if All[Abs(x - loc) <= atol + rtol * Abs(loc)], = 0, otherwise

‘‘‘

Parameters

• loc – Numeric Tensor of shape [B1, . . . , Bb, k], with b >= 0, k >= 0 The point (or batch
of points) on which this distribution is supported.

• atol – Non-negative Tensor of same dtype as loc and broadcastable shape. The absolute
tolerance for comparing closeness to loc. Default is 0.

• rtol – Non-negative Tensor of same dtype as loc and broadcastable shape. The relative
tolerance for comparing closeness to loc. Default is 0.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

106 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.Dirichlet(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Dirichlet.

See Dirichlet for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Dirichlet distributions.

Parameters

• concentration – Positive floating-point Tensor indicating mean number of class oc-
currences; aka “alpha”. Implies self.dtype, and self.batch_shape, self.event_shape, i.e., if
concentration.shape = [N1, N2, . . . , Nm, k] then batch_shape = [N1, N2, . . . , Nm] and
event_shape = [k].

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.DirichletMultinomial(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for DirichletMultinomial.

See DirichletMultinomial for more details.

Returns RandomVariable.

8.1. Subpackages 107

InferPy Documentation, Release 1.0

Original Docstring for Distribution

Initialize a batch of DirichletMultinomial distributions.

Parameters

• total_count – Non-negative floating point tensor, whose dtype is the same as concen-
tration. The shape is broadcastable to [N1,. . . , Nm] with m >= 0. Defines this as a batch of
N1 x . . . x Nm different Dirichlet multinomial distributions. Its components should be equal
to integer values.

• concentration – Positive floating point tensor, whose dtype is the same as n with shape
broadcastable to [N1,. . . , Nm, K] m >= 0. Defines this as a batch of N1 x . . . x Nm different
K class Dirichlet multinomial distributions.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.ConditionalDistribution(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for ConditionalDistribution.

See ConditionalDistribution for more details.

Returns RandomVariable.

Original Docstring for Distribution

Constructs the Distribution.

This is a private method for subclass use.

Parameters

• dtype – The type of the event samples. None implies no type-enforcement.

• reparameterization_type – Instance of ReparameterizationType. If
tfd.FULLY_REPARAMETERIZED, this Distribution can be reparameterized in terms
of some standard distribution with a function whose Jacobian is constant for the support of
the standard distribution. If tfd.NOT_REPARAMETERIZED, then no such reparameteriza-
tion is available.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

108 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• parameters – Python dict of parameters used to instantiate this Distribution.

• graph_parents – Python list of graph prerequisites of this Distribution.

• name – Python str name prefixed to Ops created by this class. Default: subclass name.

Raises ValueError – if any member of graph_parents is None or not a Tensor.

inferpy.models.Distribution(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Distribution.

See Distribution for more details.

Returns RandomVariable.

Original Docstring for Distribution

Constructs the Distribution.

This is a private method for subclass use.

Parameters

• dtype – The type of the event samples. None implies no type-enforcement.

• reparameterization_type – Instance of ReparameterizationType. If
tfd.FULLY_REPARAMETERIZED, this Distribution can be reparameterized in terms
of some standard distribution with a function whose Jacobian is constant for the support of
the standard distribution. If tfd.NOT_REPARAMETERIZED, then no such reparameteriza-
tion is available.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• parameters – Python dict of parameters used to instantiate this Distribution.

• graph_parents – Python list of graph prerequisites of this Distribution.

• name – Python str name prefixed to Ops created by this class. Default: subclass name.

Raises ValueError – if any member of graph_parents is None or not a Tensor.

inferpy.models.Empirical(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

8.1. Subpackages 109

InferPy Documentation, Release 1.0

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Empirical.

See Empirical for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize Empirical distributions.

Parameters

• samples – Numeric Tensor of shape [B1, . . . , Bk, S, E1, . . . , En]‘, k, n >= 0. Samples or
batches of samples on which the distribution is based. The first k dimensions index into a
batch of independent distributions. Length of S dimension determines number of samples in
each multiset. The last n dimension represents samples for each distribution. n is specified
by argument event_ndims.

• event_ndims – Python int32, default 0. number of dimensions for each event. When 0
this distribution has scalar samples. When 1 this distribution has vector-like samples.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value NaN to indicate the result is undefined. When False, an exception is
raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if the rank of samples < event_ndims + 1.

inferpy.models.Exponential(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Exponential.

See Exponential for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Exponential distribution with parameter rate.

Parameters

• rate – Floating point tensor, equivalent to 1 / mean. Must contain only positive values.

110 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.FiniteDiscrete(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for FiniteDiscrete.

See FiniteDiscrete for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a finite discrete contribution.

Parameters

• outcomes – A 1-D floating or integer Tensor, representing a list of possible outcomes in
strictly ascending order.

• logits – A floating N-D Tensor, N >= 1, representing the log probabilities of a set of
FiniteDiscrete distributions. The first N - 1 dimensions index into a batch of independent
distributions and the last dimension represents a vector of logits for each discrete value.
Only one of logits or probs should be passed in.

• probs – A floating N-D Tensor, N >= 1, representing the probabilities of a set of FiniteDis-
crete distributions. The first N - 1 dimensions index into a batch of independent distributions
and the last dimension represents a vector of probabilities for each discrete value. Only one
of logits or probs should be passed in.

• rtol – Tensor with same dtype as outcomes. The relative tolerance for floating number
comparison. Only effective when outcomes is a floating Tensor. Default is 10 * eps.

• atol – Tensor with same dtype as outcomes. The absolute tolerance for floating number
comparison. Only effective when outcomes is a floating Tensor. Default is 10 * eps.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value ‘NaN’ to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.Gamma(*args, **kwargs)

8.1. Subpackages 111

InferPy Documentation, Release 1.0

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Gamma.

See Gamma for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Gamma with concentration and rate parameters.

The parameters concentration and rate must be shaped in a way that supports broadcasting (e.g. concentration
+ rate is a valid operation).

Parameters

• concentration – Floating point tensor, the concentration params of the distribution(s).
Must contain only positive values.

• rate – Floating point tensor, the inverse scale params of the distribution(s). Must contain
only positive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if concentration and rate are different dtypes.

inferpy.models.GammaGamma(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for GammaGamma.

See GammaGamma for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initializes a batch of Gamma-Gamma distributions.

112 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

The parameters concentration and rate must be shaped in a way that supports broadcasting (e.g. concentration
+ mixing_concentration + mixing_rate is a valid operation).

Parameters

• concentration – Floating point tensor, the concentration params of the distribution(s).
Must contain only positive values.

• mixing_concentration – Floating point tensor, the concentration params of the mix-
ing Gamma distribution(s). Must contain only positive values.

• mixing_rate – Floating point tensor, the rate params of the mixing Gamma distribu-
tion(s). Must contain only positive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if concentration and rate are different dtypes.

inferpy.models.GaussianProcess(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for GaussianProcess.

See GaussianProcess for more details.

Returns RandomVariable.

Original Docstring for Distribution

Instantiate a GaussianProcess Distribution.

Parameters

• kernel – PositiveSemidefiniteKernel-like instance representing the GP’s covariance func-
tion.

• index_points – float Tensor representing finite (batch of) vector(s) of points in the in-
dex set over which the GP is defined. Shape has the form [b1, . . . , bB, e, f1, . . . , fF]
where F is the number of feature dimensions and must equal kernel.feature_ndims and e
is the number (size) of index points in each batch. Ultimately this distribution corresponds
to a e-dimensional multivariate normal. The batch shape must be broadcastable with ker-
nel.batch_shape and any batch dims yielded by mean_fn.

• mean_fn – Python callable that acts on index_points to produce a (batch of) vector(s) of
mean values at index_points. Takes a Tensor of shape [b1, . . . , bB, f1, . . . , fF] and returns
a Tensor whose shape is broadcastable with [b1, . . . , bB]. Default value: None implies
constant zero function.

8.1. Subpackages 113

InferPy Documentation, Release 1.0

• observation_noise_variance – float Tensor representing the variance of the noise
in the Normal likelihood distribution of the model. May be batched, in which case the
batch shape must be broadcastable with the shapes of all other batched parameters (ker-
nel.batch_shape, index_points, etc.). Default value: 0.

• jitter – float scalar Tensor added to the diagonal of the covariance matrix to ensure
positive definiteness of the covariance matrix. Default value: 1e-6.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: False.

• name – Python str name prefixed to Ops created by this class. Default value: “Gaussian-
Process”.

Raises ValueError – if mean_fn is not None and is not callable.

inferpy.models.GaussianProcessRegressionModel(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for GaussianProcessRegressionModel.

See GaussianProcessRegressionModel for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a GaussianProcessRegressionModel instance.

Parameters

• kernel – PositiveSemidefiniteKernel-like instance representing the GP’s covariance func-
tion.

• index_points – float Tensor representing finite collection, or batch of collections, of
points in the index set over which the GP is defined. Shape has the form [b1, . . . , bB, e, f1,
. . . , fF] where F is the number of feature dimensions and must equal kernel.feature_ndims
and e is the number (size) of index points in each batch. Ultimately this distribution cor-
responds to an e-dimensional multivariate normal. The batch shape must be broadcastable
with kernel.batch_shape and any batch dims yielded by mean_fn.

• observation_index_points – float Tensor representing finite collection, or batch
of collections, of points in the index set for which some data has been observed. Shape
has the form [b1, . . . , bB, e, f1, . . . , fF] where F is the number of feature dimensions and
must equal kernel.feature_ndims, and e is the number (size) of index points in each batch.
[b1, . . . , bB, e] must be broadcastable with the shape of observations, and [b1, . . . , bB]
must be broadcastable with the shapes of all other batched parameters (kernel.batch_shape,

114 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

index_points, etc). The default value is None, which corresponds to the empty set of ob-
servations, and simply results in the prior predictive model (a GP with noise of variance
predictive_noise_variance).

• observations – float Tensor representing collection, or batch of collections, of observa-
tions corresponding to observation_index_points. Shape has the form [b1, . . . , bB, e], which
must be brodcastable with the batch and example shapes of observation_index_points. The
batch shape [b1, . . . , bB] must be broadcastable with the shapes of all other batched parame-
ters (kernel.batch_shape, index_points, etc.). The default value is None, which corresponds
to the empty set of observations, and simply results in the prior predictive model (a GP with
noise of variance predictive_noise_variance).

• observation_noise_variance – float Tensor representing the variance of the noise
in the Normal likelihood distribution of the model. May be batched, in which case the
batch shape must be broadcastable with the shapes of all other batched parameters (ker-
nel.batch_shape, index_points, etc.). Default value: 0.

• predictive_noise_variance – float Tensor representing the variance in the poste-
rior predictive model. If None, we simply re-use observation_noise_variance for the pos-
terior predictive noise. If set explicitly, however, we use this value. This allows us, for
example, to omit predictive noise variance (by setting this to zero) to obtain noiseless pos-
terior predictions of function values, conditioned on noisy observations.

• mean_fn – Python callable that acts on index_points to produce a collection, or batch of
collections, of mean values at index_points. Takes a Tensor of shape [b1, . . . , bB, f1, . . . , fF]
and returns a Tensor whose shape is broadcastable with [b1, . . . , bB]. Default value: None
implies the constant zero function.

• jitter – float scalar Tensor added to the diagonal of the covariance matrix to ensure
positive definiteness of the covariance matrix. Default value: 1e-6.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value NaN to indicate the result is undefined. When False, an exception is
raised if one or more of the statistic’s batch members are undefined. Default value: False.

• name – Python str name prefixed to Ops created by this class. Default value: ‘Gaussian-
ProcessRegressionModel’.

Raises ValueError – if either - only one of observations and observation_index_points is given,
or - mean_fn is not None and not callable.

inferpy.models.Geometric(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Geometric.

See Geometric for more details.

8.1. Subpackages 115

InferPy Documentation, Release 1.0

Returns RandomVariable.

Original Docstring for Distribution

Construct Geometric distributions.

Parameters

• logits – Floating-point Tensor with shape [B1, . . . , Bb] where b >= 0 indicates the
number of batch dimensions. Each entry represents logits for the probability of success for
independent Geometric distributions and must be in the range (-inf, inf]. Only one of logits
or probs should be specified.

• probs – Positive floating-point Tensor with shape [B1, . . . , Bb] where b >= 0 indicates
the number of batch dimensions. Each entry represents the probability of success for inde-
pendent Geometric distributions and must be in the range (0, 1]. Only one of logits or probs
should be specified.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.Gumbel(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Gumbel.

See Gumbel for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Gumbel distributions with location and scale loc and scale.

The parameters loc and scale must be shaped in a way that supports broadcasting (e.g. loc + scale is a valid
operation).

Parameters

• loc – Floating point tensor, the means of the distribution(s).

• scale – Floating point tensor, the scales of the distribution(s). scale must contain only
positive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

116 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class. Default value: ‘Gumbel’.

Raises TypeError – if loc and scale are different dtypes.

inferpy.models.HalfCauchy(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for HalfCauchy.

See HalfCauchy for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a half-Cauchy distribution with loc and scale.

Parameters

• loc – Floating-point Tensor; the location(s) of the distribution(s).

• scale – Floating-point Tensor; the scale(s) of the distribution(s). Must contain only posi-
tive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False (i.e. do not validate args).

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class. Default value: ‘HalfCauchy’.

Raises TypeError – if loc and scale have different dtype.

inferpy.models.HalfNormal(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for HalfNormal.

See HalfNormal for more details.

8.1. Subpackages 117

InferPy Documentation, Release 1.0

Returns RandomVariable.

Original Docstring for Distribution

Construct HalfNormals with scale scale.

Parameters

• scale – Floating point tensor; the scales of the distribution(s). Must contain only positive
values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.HiddenMarkovModel(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for HiddenMarkovModel.

See HiddenMarkovModel for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize hidden Markov model.

Parameters

• initial_distribution – A Categorical-like instance. Determines probability of first
hidden state in Markov chain. The number of categories must match the number of cate-
gories of transition_distribution as well as both the rightmost batch dimension of transi-
tion_distribution and the rightmost batch dimension of observation_distribution.

• transition_distribution – A Categorical-like instance. The rightmost batch di-
mension indexes the probability distribution of each hidden state conditioned on the previous
hidden state.

• observation_distribution – A tfp.distributions.Distribution-like instance. The
rightmost batch dimension indexes the distribution of each observation conditioned on the
corresponding hidden state.

• num_steps – The number of steps taken in Markov chain. A python int.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

118 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class. Default value: “Hidden-
MarkovModel”.

Raises

• ValueError – if num_steps is not at least 1.

• ValueError – if initial_distribution does not have scalar event_shape.

• ValueError – if transition_distribution does not have scalar event_shape.

• ValueError – if transition_distribution and observation_distribution are fully defined
but don’t have matching rightmost dimension.

inferpy.models.Horseshoe(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Horseshoe.

See Horseshoe for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a Horseshoe distribution with scale.

Parameters

• scale – Floating point tensor; the scales of the distribution(s). Must contain only positive
values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False (i.e., do not validate args).

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class. Default value: ‘Horseshoe’.

inferpy.models.Independent(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

8.1. Subpackages 119

InferPy Documentation, Release 1.0

Random Variable information:

Create a random variable for Independent.

See Independent for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a Independent distribution.

Parameters

• distribution – The base distribution instance to transform. Typically an instance of
Distribution.

• reinterpreted_batch_ndims – Scalar, integer number of rightmost batch dims
which will be regarded as event dims. When None all but the first batch axis (batch axis
0) will be transferred to event dimensions (analogous to tf.layers.flatten).

• validate_args – Python bool. Whether to validate input with asserts. If validate_args
is False, and the inputs are invalid, correct behavior is not guaranteed.

• name – The name for ops managed by the distribution. Default value: Independent +
distribution.name.

Raises ValueError – if reinterpreted_batch_ndims exceeds distribution.batch_ndims

inferpy.models.InverseGamma(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for InverseGamma.

See InverseGamma for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct InverseGamma with concentration and scale parameters. (deprecated arguments)

Warning: SOME ARGUMENTS ARE DEPRECATED: (rate). They will be removed after 2019-05-08. In-
structions for updating: The rate parameter is deprecated. Use scale instead.The rate parameter was always
interpreted as a scale parameter, but erroneously misnamed.

The parameters concentration and scale must be shaped in a way that supports broadcasting (e.g. concentration
+ scale is a valid operation).

Parameters

• concentration – Floating point tensor, the concentration params of the distribution(s).
Must contain only positive values.

• scale – Floating point tensor, the scale params of the distribution(s). Must contain only
positive values.

120 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• rate – Deprecated (mis-named) alias for scale.

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if concentration and scale are different dtypes.

inferpy.models.InverseGaussian(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for InverseGaussian.

See InverseGaussian for more details.

Returns RandomVariable.

Original Docstring for Distribution

Constructs inverse Gaussian distribution with loc and concentration.

Parameters

• loc – Floating-point Tensor, the loc params. Must contain only positive values.

• concentration – Floating-point Tensor, the concentration params. Must contain only
positive values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False (i.e. do not validate args).

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class. Default value: ‘InverseGaus-
sian’.

inferpy.models.JointDistribution(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

8.1. Subpackages 121

InferPy Documentation, Release 1.0

Random Variable information:

Create a random variable for JointDistribution.

See JointDistribution for more details.

Returns RandomVariable.

Original Docstring for Distribution

Constructs the Distribution.

This is a private method for subclass use.

Parameters

• dtype – The type of the event samples. None implies no type-enforcement.

• reparameterization_type – Instance of ReparameterizationType. If
tfd.FULLY_REPARAMETERIZED, this Distribution can be reparameterized in terms
of some standard distribution with a function whose Jacobian is constant for the support of
the standard distribution. If tfd.NOT_REPARAMETERIZED, then no such reparameteriza-
tion is available.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• parameters – Python dict of parameters used to instantiate this Distribution.

• graph_parents – Python list of graph prerequisites of this Distribution.

• name – Python str name prefixed to Ops created by this class. Default: subclass name.

Raises ValueError – if any member of graph_parents is None or not a Tensor.

inferpy.models.JointDistributionCoroutine(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for JointDistributionCoroutine.

See JointDistributionCoroutine for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct the JointDistributionCoroutine distribution.

Parameters

• model – A generator that yields a sequence of tfd.Distribution-like instances.

122 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• sample_dtype – Samples from this distribution will be structured like
tf.nest.pack_sequence_as(sample_dtype, list_). sample_dtype is only used for
tf.nest.pack_sequence_as structuring of outputs, never casting (which is the responsi-
bility of the component distributions). Default value: None (i.e., tuple).

• validate_args – Python bool. Whether to validate input with asserts. If validate_args
is False, and the inputs are invalid, correct behavior is not guaranteed. Default value: False.

• name – The name for ops managed by the distribution. Default value: None (i.e., “Joint-
DistributionCoroutine”).

inferpy.models.JointDistributionNamed(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for JointDistributionNamed.

See JointDistributionNamed for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct the JointDistributionNamed distribution.

Parameters

• model – Python dict or namedtuple of distribution-making functions each with required
args corresponding only to other keys.

• validate_args – Python bool. Whether to validate input with asserts. If validate_args
is False, and the inputs are invalid, correct behavior is not guaranteed. Default value: False.

• name – The name for ops managed by the distribution. Default value: None (i.e., “Joint-
DistributionNamed”).

inferpy.models.JointDistributionSequential(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for JointDistributionSequential.

See JointDistributionSequential for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct the JointDistributionSequential distribution.

8.1. Subpackages 123

InferPy Documentation, Release 1.0

Parameters

• model – Python list of either tfd.Distribution instances and/or lambda functions which take
the k previous distributions and returns a new tfd.Distribution instance.

• validate_args – Python bool. Whether to validate input with asserts. If validate_args
is False, and the inputs are invalid, correct behavior is not guaranteed. Default value: False.

• name – The name for ops managed by the distribution. Default value: None (i.e., “Joint-
DistributionSequential”).

inferpy.models.Kumaraswamy(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Kumaraswamy.

See Kumaraswamy for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Kumaraswamy distributions.

Parameters

• concentration1 – Positive floating-point Tensor indicating mean number of successes;
aka “alpha”. Implies self.dtype and self.batch_shape, i.e., concentration1.shape = [N1, N2,
. . . , Nm] = self.batch_shape.

• concentration0 – Positive floating-point Tensor indicating mean number of failures;
aka “beta”. Otherwise has same semantics as concentration1.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.Laplace(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

124 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

Create a random variable for Laplace.

See Laplace for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Laplace distribution with parameters loc and scale.

The parameters loc and scale must be shaped in a way that supports broadcasting (e.g., loc / scale is a valid
operation).

Parameters

• loc – Floating point tensor which characterizes the location (center) of the distribution.

• scale – Positive floating point tensor which characterizes the spread of the distribution.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if loc and scale are of different dtype.

inferpy.models.LinearGaussianStateSpaceModel(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for LinearGaussianStateSpaceModel.

See LinearGaussianStateSpaceModel for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a ‘LinearGaussianStateSpaceModel.

Parameters

• num_timesteps – Integer Tensor total number of timesteps.

• transition_matrix – A transition operator, represented by a Tensor or LinearOperator
of shape [latent_size, latent_size], or by a callable taking as argument a scalar integer Tensor
t and returning a Tensor or LinearOperator representing the transition operator from latent
state at time t to time t + 1.

• transition_noise – An instance of tfd.MultivariateNormalLinearOperator with event
shape [latent_size], representing the mean and covariance of the transition noise model, or
a callable taking as argument a scalar integer Tensor t and returning such a distribution
representing the noise in the transition from time t to time t + 1.

8.1. Subpackages 125

InferPy Documentation, Release 1.0

• observation_matrix – An observation operator, represented by a Tensor or LinearOp-
erator of shape [observation_size, latent_size], or by a callable taking as argument a scalar
integer Tensor t and returning a timestep-specific Tensor or LinearOperator.

• observation_noise – An instance of tfd.MultivariateNormalLinearOperator with
event shape [observation_size], representing the mean and covariance of the observation
noise model, or a callable taking as argument a scalar integer Tensor t and returning a
timestep-specific noise model.

• initial_state_prior – An instance of MultivariateNormalLinearOperator repre-
senting the prior distribution on latent states; must have event shape [latent_size].

• initial_step – optional int specifying the time of the first modeled timestep. This
is added as an offset when passing timesteps t to (optional) callables specifying timestep-
specific transition and observation models.

• validate_args – Python bool, default False. Whether to validate input with asserts. If
validate_args is False, and the inputs are invalid, correct behavior is not guaranteed.

• allow_nan_stats – Python bool, default True. If False, raise an exception if a statistic
(e.g. mean/mode/etc. . .) is undefined for any batch member If True, batch members with
valid parameters leading to undefined statistics will return NaN for this statistic.

• name – The name to give Ops created by the initializer.

inferpy.models.LKJ(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for LKJ.

See LKJ for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct LKJ distributions.

Parameters

• dimension – Python int. The dimension of the correlation matrices to sample.

• concentration – float or double Tensor. The positive concentration parameter of the
LKJ distributions. The pdf of a sample matrix X is proportional to det(X) ** (concentration
- 1).

• input_output_cholesky – Python bool. If True, functions whose input or output
have the semantics of samples assume inputs are in Cholesky form and return outputs in
Cholesky form. In particular, if this flag is True, input to log_prob is presumed of Cholesky
form and output from sample is of Cholesky form. Setting this argument to True is purely
a computational optimization and does not change the underlying distribution. Addition-
ally, validation checks which are only defined on the multiplied-out form are omitted, even
if validate_args is True. Default value: False (i.e., input/output does not have Cholesky
semantics).

126 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value NaN to indicate the result is undefined. When False, an exception is
raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – If dimension is negative.

inferpy.models.Logistic(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Logistic.

See Logistic for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Logistic distributions with mean and scale loc and scale.

The parameters loc and scale must be shaped in a way that supports broadcasting (e.g. loc + scale is a valid
operation).

Parameters

• loc – Floating point tensor, the means of the distribution(s).

• scale – Floating point tensor, the scales of the distribution(s). Must contain only positive
values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – The name to give Ops created by the initializer.

Raises TypeError – if loc and scale are different dtypes.

inferpy.models.LogNormal(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

8.1. Subpackages 127

InferPy Documentation, Release 1.0

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for LogNormal.

See LogNormal for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a log-normal distribution.

The LogNormal distribution models positive-valued random variables whose logarithm is normally distributed
with mean loc and standard deviation scale. It is constructed as the exponential transformation of a Normal
distribution.

Parameters

• loc – Floating-point Tensor; the means of the underlying Normal distribution(s).

• scale – Floating-point Tensor; the stddevs of the underlying Normal distribution(s).

• validate_args – Python bool, default False. Whether to validate input with asserts. If
validate_args is False, and the inputs are invalid, correct behavior is not guaranteed.

• allow_nan_stats – Python bool, default True. If False, raise an exception if a statistic
(e.g. mean/mode/etc. . .) is undefined for any batch member If True, batch members with
valid parameters leading to undefined statistics will return NaN for this statistic.

• name – The name to give Ops created by the initializer.

inferpy.models.Mixture(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Mixture.

See Mixture for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a Mixture distribution.

A Mixture is defined by a Categorical (cat, representing the mixture probabilities) and a list of Distribution
objects all having matching dtype, batch shape, event shape, and continuity properties (the components).

The num_classes of cat must be possible to infer at graph construction time and match len(components).

Parameters

• cat – A Categorical distribution instance, representing the probabilities of distributions.

• components – A list or tuple of Distribution instances. Each instance must have the same
type, be defined on the same domain, and have matching event_shape and batch_shape.

128 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• validate_args – Python bool, default False. If True, raise a runtime error if batch or
event ranks are inconsistent between cat and any of the distributions. This is only checked
if the ranks cannot be determined statically at graph construction time.

• allow_nan_stats – Boolean, default True. If False, raise an exception if a statistic (e.g.
mean/mode/etc. . .) is undefined for any

batch member. If True, batch members with valid parameters leading to undefined
statistics will return NaN for this statistic.

• use_static_graph – Calls to sample will not rely on dynamic tensor indexing, al-
lowing for some static graph compilation optimizations, but at the expense of sampling all
underlying distributions in the mixture. (Possibly useful when running on TPUs). Default
value: False (i.e., use dynamic indexing).

• name – A name for this distribution (optional).

Raises

• TypeError – If cat is not a Categorical, or components is not a list or tuple, or the elements
of components are not instances of Distribution, or do not have matching dtype.

• ValueError – If components is an empty list or tuple, or its elements do not have a
statically known event rank. If cat.num_classes cannot be inferred at graph creation time,
or the constant value of cat.num_classes is not equal to len(components), or all components
and cat do not have matching static batch shapes, or all components do not have matching
static event shapes.

inferpy.models.MixtureSameFamily(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MixtureSameFamily.

See MixtureSameFamily for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a MixtureSameFamily distribution.

Parameters

• mixture_distribution – tfp.distributions.Categorical-like instance. Manages the
probability of selecting components. The number of categories must match the rightmost
batch dimension of the components_distribution. Must have either scalar batch_shape or
batch_shape matching components_distribution.batch_shape[:-1].

• components_distribution – tfp.distributions.Distribution-like instance. Right-most
batch dimension indexes components.

• reparameterize – Python bool, default False. Whether to reparameterize samples of
the distribution using implicit reparameterization gradients [(Figurnov et al., 2018)][1]. The
gradients for the mixture logits are equivalent to the ones described by [(Graves, 2016)][2].

8.1. Subpackages 129

InferPy Documentation, Release 1.0

The gradients for the components parameters are also computed using implicit reparameter-
ization (as opposed to ancestral sampling), meaning that all components are updated every
step. Only works when:

(1) components_distribution is fully reparameterized;

(2) components_distribution is either a scalar distribution or fully factorized
(tfd.Independent applied to a scalar distribution); (3) batch shape has a known rank.

Experimental, may be slow and produce infs/NaNs.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises

• ValueError – if not dtype_util.is_integer(mixture_distribution.dtype).

• ValueError – if mixture_distribution does not have scalar event_shape.

• ValueError – if mixture_distribution.batch_shape and
components_distribution.batch_shape[:-1] are both fully defined and the former is
neither scalar nor equal to the latter.

• ValueError – if mixture_distribution categories does not equal components_distribution
rightmost batch shape.

References

[1]: Michael Figurnov, Shakir Mohamed and Andriy Mnih. Implicit reparameterization gradients. In
Neural Information Processing Systems, 2018. https://arxiv.org/abs/1805.08498

[2]: Alex Graves. Stochastic Backpropagation through Mixture Density Distributions. _arXiv_, 2016.
https://arxiv.org/abs/1607.05690

inferpy.models.Multinomial(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Multinomial.

See Multinomial for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Multinomial distributions.

Parameters

130 Chapter 8. inferpy package

https://arxiv.org/abs/1805.08498
https://arxiv.org/abs/1607.05690

InferPy Documentation, Release 1.0

• total_count – Non-negative floating point tensor with shape broadcastable to [N1,. . . ,
Nm] with m >= 0. Defines this as a batch of N1 x . . . x Nm different Multinomial distribu-
tions. Its components should be equal to integer values.

• logits – Floating point tensor representing unnormalized log-probabilities of a positive
event with shape broadcastable to [N1,. . . , Nm, K] m >= 0, and the same dtype as to-
tal_count. Defines this as a batch of N1 x . . . x Nm different K class Multinomial distribu-
tions. Only one of logits or probs should be passed in.

• probs – Positive floating point tensor with shape broadcastable to [N1,. . . , Nm, K] m >=
0 and same dtype as total_count. Defines this as a batch of N1 x . . . x Nm different K class
Multinomial distributions. probs’s components in the last portion of its shape should sum to
1. Only one of logits or probs should be passed in.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.MultivariateStudentTLinearOperator(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateStudentTLinearOperator.

See MultivariateStudentTLinearOperator for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Multivariate Student’s t-distribution on R^k.

The batch_shape is the broadcast shape between df, loc and scale arguments.

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc must
broadcast with this.

Additional leading dimensions (if any) will index batches.

Parameters

• df – A positive floating-point Tensor. Has shape [B1, . . . , Bb] where b >= 0.

• loc – Floating-point Tensor. Has shape [B1, . . . , Bb, k] where k is the event size.

• scale – Instance of LinearOperator with a floating dtype and shape [B1, . . . , Bb, k, k].

• validate_args – Python bool, default False. Whether to validate input with asserts. If
validate_args is False, and the inputs are invalid, correct behavior is not guaranteed.

8.1. Subpackages 131

InferPy Documentation, Release 1.0

• allow_nan_stats – Python bool, default True. If False, raise an exception if a statistic
(e.g. mean/variance/etc. . .) is undefined for any batch member If True, batch members with
valid parameters leading to undefined statistics will return NaN for this statistic.

• name – The name to give Ops created by the initializer.

Raises

• TypeError – if not scale.dtype.is_floating.

• ValueError – if not scale.is_positive_definite.

inferpy.models.MultivariateNormalDiag(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalDiag.

See MultivariateNormalDiag for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale arguments.

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc (if
provided) must broadcast with this.

Recall that covariance = scale @ scale.T. A (non-batch) scale matrix is:

`none scale = diag(scale_diag + scale_identity_multiplier * ones(k)) `

where:

• scale_diag.shape = [k], and,

• scale_identity_multiplier.shape = [].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then scale is the Identity matrix.

Parameters

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

• scale_diag – Non-zero, floating-point Tensor representing a diagonal matrix added to
scale. May have shape [B1, . . . , Bb, k], b >= 0, and characterizes b-batches of k x k diagonal
matrices added to scale. When both scale_identity_multiplier and scale_diag are None then
scale is the Identity.

• scale_identity_multiplier – Non-zero, floating-point Tensor representing a
scaled-identity-matrix added to scale. May have shape [B1, . . . , Bb], b >= 0, and

132 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

characterizes b-batches of scaled k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is the Identity.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if at most scale_identity_multiplier is specified.

inferpy.models.MultivariateNormalDiagWithSoftplusScale(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalDiagWithSoftplusScale.

See MultivariateNormalDiagWithSoftplusScale for more details.

Returns RandomVariable.

Original Docstring for Distribution

DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2019-06-05. Instructions for
updating: MultivariateNormalDiagWithSoftplusScale is deprecated, use MultivariateNormalDiag(loc=loc,
scale_diag=tf.nn.softplus(scale_diag)) instead.

inferpy.models.MultivariateNormalDiagPlusLowRank(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalDiagPlusLowRank.

See MultivariateNormalDiagPlusLowRank for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale arguments.

8.1. Subpackages 133

InferPy Documentation, Release 1.0

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc (if
provided) must broadcast with this.

Recall that covariance = scale @ scale.T. A (non-batch) scale matrix is:

‘‘‘none scale = diag(scale_diag + scale_identity_multiplier ones(k)) +

scale_perturb_factor @ diag(scale_perturb_diag) @ scale_perturb_factor.T

‘‘‘

where:

• scale_diag.shape = [k],

• scale_identity_multiplier.shape = [],

• scale_perturb_factor.shape = [k, r], typically k >> r, and,

• scale_perturb_diag.shape = [r].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then scale is the Identity matrix.

Parameters

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

• scale_diag – Non-zero, floating-point Tensor representing a diagonal matrix added to
scale. May have shape [B1, . . . , Bb, k], b >= 0, and characterizes b-batches of k x k diagonal
matrices added to scale. When both scale_identity_multiplier and scale_diag are None then
scale is the Identity.

• scale_identity_multiplier – Non-zero, floating-point Tensor representing a
scaled-identity-matrix added to scale. May have shape [B1, . . . , Bb], b >= 0, and
characterizes b-batches of scaled k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is the Identity.

• scale_perturb_factor – Floating-point Tensor representing a rank-r perturbation
added to scale. May have shape [B1, . . . , Bb, k, r], b >= 0, and characterizes b-batches of
rank-r updates to scale. When None, no rank-r update is added to scale.

• scale_perturb_diag – Floating-point Tensor representing a diagonal matrix inside
the rank-r perturbation added to scale. May have shape [B1, . . . , Bb, r], b >= 0, and
characterizes b-batches of r x r diagonal matrices inside the perturbation added to scale.
When None, an identity matrix is used inside the perturbation. Can only be specified if
scale_perturb_factor is also specified.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if at most scale_identity_multiplier is specified.

inferpy.models.MultivariateNormalFullCovariance(*args, **kwargs)

134 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalFullCovariance.

See MultivariateNormalFullCovariance for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and covariance_matrix arguments.

The event_shape is given by last dimension of the matrix implied by covariance_matrix. The last dimension of
loc (if provided) must broadcast with this.

A non-batch covariance_matrix matrix is a k x k symmetric positive definite matrix. In other words it is (real)
symmetric with all eigenvalues strictly positive.

Additional leading dimensions (if any) will index batches.

Parameters

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

• covariance_matrix – Floating-point, symmetric positive definite Tensor of same
dtype as loc. The strict upper triangle of covariance_matrix is ignored, so if covari-
ance_matrix is not symmetric no error will be raised (unless validate_args is True). co-
variance_matrix has shape [B1, . . . , Bb, k, k] where b >= 0 and k is the event size.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if neither loc nor covariance_matrix are specified.

inferpy.models.MultivariateNormalLinearOperator(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

8.1. Subpackages 135

InferPy Documentation, Release 1.0

Create a random variable for MultivariateNormalLinearOperator.

See MultivariateNormalLinearOperator for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale arguments.

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc (if
provided) must broadcast with this.

Recall that covariance = scale @ scale.T.

Additional leading dimensions (if any) will index batches.

Parameters

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

• scale – Instance of LinearOperator with same dtype as loc and shape [B1, . . . , Bb, k, k].

• validate_args – Python bool, default False. Whether to validate input with asserts. If
validate_args is False, and the inputs are invalid, correct behavior is not guaranteed.

• allow_nan_stats – Python bool, default True. If False, raise an exception if a statistic
(e.g. mean/mode/etc. . .) is undefined for any batch member If True, batch members with
valid parameters leading to undefined statistics will return NaN for this statistic.

• name – The name to give Ops created by the initializer.

Raises

• ValueError – if scale is unspecified.

• TypeError – if not scale.dtype.is_floating

inferpy.models.MultivariateNormalTriL(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalTriL.

See MultivariateNormalTriL for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale arguments.

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc (if
provided) must broadcast with this.

136 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

Recall that covariance = scale @ scale.T. A (non-batch) scale matrix is:

`none scale = scale_tril `

where scale_tril is lower-triangular k x k matrix with non-zero diagonal, i.e., tf.diag_part(scale_tril) != 0.

Additional leading dimensions (if any) will index batches.

Parameters

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

• scale_tril – Floating-point, lower-triangular Tensor with non-zero diagonal elements.
scale_tril has shape [B1, . . . , Bb, k, k] where b >= 0 and k is the event size.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if neither loc nor scale_tril are specified.

inferpy.models.NegativeBinomial(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for NegativeBinomial.

See NegativeBinomial for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct NegativeBinomial distributions.

Parameters

• total_count – Non-negative floating-point Tensor with shape broadcastable to [B1,. . . ,
Bb] with b >= 0 and the same dtype as probs or logits. Defines this as a batch of N1 x
. . . x Nm different Negative Binomial distributions. In practice, this represents the number
of negative Bernoulli trials to stop at (the total_count of failures), but this is still a valid
distribution when total_count is a non-integer.

• logits – Floating-point Tensor with shape broadcastable to [B1, . . . , Bb] where b >= 0
indicates the number of batch dimensions. Each entry represents logits for the probability
of success for independent Negative Binomial distributions and must be in the open interval
(-inf, inf). Only one of logits or probs should be specified.

8.1. Subpackages 137

InferPy Documentation, Release 1.0

• probs – Positive floating-point Tensor with shape broadcastable to [B1, . . . , Bb] where b
>= 0 indicates the number of batch dimensions. Each entry represents the probability of
success for independent Negative Binomial distributions and must be in the open interval
(0, 1). Only one of logits or probs should be specified.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.Normal(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Normal.

See Normal for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Normal distributions with mean and stddev loc and scale.

The parameters loc and scale must be shaped in a way that supports broadcasting (e.g. loc + scale is a valid
operation).

Parameters

• loc – Floating point tensor; the means of the distribution(s).

• scale – Floating point tensor; the stddevs of the distribution(s). Must contain only positive
values.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if loc and scale have different dtype.

inferpy.models.OneHotCategorical(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

138 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for OneHotCategorical.

See OneHotCategorical for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize OneHotCategorical distributions using class log-probabilities.

Parameters

• logits – An N-D Tensor, N >= 1, representing the log probabilities of a set of Categorical
distributions. The first N - 1 dimensions index into a batch of independent distributions and
the last dimension represents a vector of logits for each class. Only one of logits or probs
should be passed in.

• probs – An N-D Tensor, N >= 1, representing the probabilities of a set of Categorical
distributions. The first N - 1 dimensions index into a batch of independent distributions and
the last dimension represents a vector of probabilities for each class. Only one of logits or
probs should be passed in.

• dtype – The type of the event samples (default: int32).

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.Pareto(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Pareto.

See Pareto for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Pareto distribution with concentration and scale.

Parameters

8.1. Subpackages 139

InferPy Documentation, Release 1.0

• concentration – Floating point tensor. Must contain only positive values.

• scale – Floating point tensor, equivalent to mode. scale also restricts the domain of this
distribution to be in [scale, inf). Must contain only positive values. Default value: 1.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False (i.e. do not validate args).

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class. Default value: ‘Pareto’.

inferpy.models.Poisson(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Poisson.

See Poisson for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Poisson distributions.

Parameters

• rate – Floating point tensor, the rate parameter. rate must be positive. Must specify exactly
one of rate and log_rate.

• log_rate – Floating point tensor, the log of the rate parameter. Must specify exactly one
of rate and log_rate.

• interpolate_nondiscrete – Python bool. When False, log_prob returns -inf (and
prob returns 0) for non-integer inputs. When True, log_prob evaluates the continuous func-
tion k * log_rate - lgamma(k+1) - rate, which matches the Poisson pmf at integer arguments
k (note that this function is not itself a normalized probability log-density). Default value:
True.

• validate_args – Python bool. When True distribution parameters are checked for
validity despite possibly degrading runtime performance. When False invalid inputs may
silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool. When True, statistics (e.g., mean, mode, variance)
use the value “NaN” to indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class.

Raises

• ValueError – if none or both of rate, log_rate are specified.

140 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• TypeError – if rate is not a float-type.

• TypeError – if log_rate is not a float-type.

inferpy.models.PoissonLogNormalQuadratureCompound(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for PoissonLogNormalQuadratureCompound.

See PoissonLogNormalQuadratureCompound for more details.

Returns RandomVariable.

Original Docstring for Distribution

Constructs the PoissonLogNormalQuadratureCompound‘.

Note: probs returned by (optional) quadrature_fn are presumed to be either a length-quadrature_size vector or a
batch of vectors in 1-to-1 correspondence with the returned grid. (I.e., broadcasting is only partially supported.)

Parameters

• loc – float-like (batch of) scalar Tensor; the location parameter of the LogNormal prior.

• scale – float-like (batch of) scalar Tensor; the scale parameter of the LogNormal prior.

• quadrature_size – Python int scalar representing the number of quadrature points.

• quadrature_fn – Python callable taking loc, scale, quadrature_size, validate_args and
returning tuple(grid, probs) representing the LogNormal grid and corresponding normalized
weight. normalized) weight. Default value: quadrature_scheme_lognormal_quantiles.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if quadrature_grid and quadrature_probs have different base dtype.

inferpy.models.QuantizedDistribution(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

8.1. Subpackages 141

InferPy Documentation, Release 1.0

Create a random variable for QuantizedDistribution.

See QuantizedDistribution for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a Quantized Distribution representing Y = ceiling(X).

Some properties are inherited from the distribution defining X. Example: allow_nan_stats is determined for this
QuantizedDistribution by reading the distribution.

Parameters

• distribution – The base distribution class to transform. Typically an instance of Dis-
tribution.

• low – Tensor with same dtype as this distribution and shape able to be added to samples.
Should be a whole number. Default None. If provided, base distribution’s prob should be
defined at low.

• high – Tensor with same dtype as this distribution and shape able to be added to samples.
Should be a whole number. Default None. If provided, base distribution’s prob should be
defined at high - 1. high must be strictly greater than low.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• name – Python str name prefixed to Ops created by this class.

Raises

• TypeError – If dist_cls is not a subclass of Distribution or continuous.

• NotImplementedError – If the base distribution does not implement cdf.

inferpy.models.RelaxedBernoulli(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for RelaxedBernoulli.

See RelaxedBernoulli for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct RelaxedBernoulli distributions.

Parameters

• temperature – An 0-D Tensor, representing the temperature of a set of RelaxedBernoulli
distributions. The temperature should be positive.

142 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• logits – An N-D Tensor representing the log-odds of a positive event. Each entry in the
Tensor parametrizes an independent RelaxedBernoulli distribution where the probability of
an event is sigmoid(logits). Only one of logits or probs should be passed in.

• probs – An N-D Tensor representing the probability of a positive event. Each entry in
the Tensor parameterizes an independent Bernoulli distribution. Only one of logits or probs
should be passed in.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – If both probs and logits are passed, or if neither.

inferpy.models.ExpRelaxedOneHotCategorical(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for ExpRelaxedOneHotCategorical.

See ExpRelaxedOneHotCategorical for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize ExpRelaxedOneHotCategorical using class log-probabilities.

Parameters

• temperature – An 0-D Tensor, representing the temperature of a set of ExpRelaxedCat-
egorical distributions. The temperature should be positive.

• logits – An N-D Tensor, N >= 1, representing the log probabilities of a set of Ex-
pRelaxedCategorical distributions. The first N - 1 dimensions index into a batch of inde-
pendent distributions and the last dimension represents a vector of logits for each class.
Only one of logits or probs should be passed in.

• probs – An N-D Tensor, N >= 1, representing the probabilities of a set of ExpRelaxed-
Categorical distributions. The first N - 1 dimensions index into a batch of independent
distributions and the last dimension represents a vector of probabilities for each class. Only
one of logits or probs should be passed in.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

8.1. Subpackages 143

InferPy Documentation, Release 1.0

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.RelaxedOneHotCategorical(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for RelaxedOneHotCategorical.

See RelaxedOneHotCategorical for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize RelaxedOneHotCategorical using class log-probabilities.

Parameters

• temperature – An 0-D Tensor, representing the temperature of a set of RelaxedOneHot-
Categorical distributions. The temperature should be positive.

• logits – An N-D Tensor, N >= 1, representing the log probabilities of a set of Relaxe-
dOneHotCategorical distributions. The first N - 1 dimensions index into a batch of indepen-
dent distributions and the last dimension represents a vector of logits for each class. Only
one of logits or probs should be passed in.

• probs – An N-D Tensor, N >= 1, representing the probabilities of a set of RelaxedOne-
HotCategorical distributions. The first N - 1 dimensions index into a batch of independent
distributions and the last dimension represents a vector of probabilities for each class. Only
one of logits or probs should be passed in.

• validate_args – Unused in this distribution.

• allow_nan_stats – Python bool, default True. If False, raise an exception if a statistic
(e.g. mean/mode/etc. . .) is undefined for any batch member. If True, batch members with
valid parameters leading to undefined statistics will return NaN for this statistic.

• name – A name for this distribution (optional).

inferpy.models.Sample(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

144 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

Create a random variable for Sample.

See Sample for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct the Sample distribution.

Parameters

• distribution – The base distribution instance to transform. Typically an instance of
Distribution.

• sample_shape – int scalar or vector Tensor representing the shape of a single sample.

• validate_args – Python bool. Whether to validate input with asserts. If validate_args
is False, and the inputs are invalid, correct behavior is not guaranteed.

• name – The name for ops managed by the distribution. Default value: None (i.e., ‘Sample’
+ distribution.name).

inferpy.models.SinhArcsinh(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for SinhArcsinh.

See SinhArcsinh for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct SinhArcsinh distribution on (-inf, inf).

Arguments (loc, scale, skewness, tailweight) must have broadcastable shape (indexing batch dimensions). They
must all have the same dtype.

Parameters

• loc – Floating-point Tensor.

• scale – Tensor of same dtype as loc.

• skewness – Skewness parameter. Default is 0.0 (no skew).

• tailweight – Tailweight parameter. Default is 1.0 (unchanged tailweight)

• distribution – tf.Distribution-like instance. Distribution that is transformed to produce
this distribution. Default is tfd.Normal(0., 1.). Must be a scalar-batch, scalar-event distri-
bution. Typically distribution.reparameterization_type = FULLY_REPARAMETERIZED or
it is a function of non-trainable parameters. WARNING: If you backprop through a Sin-
hArcsinh sample and distribution is not FULLY_REPARAMETERIZED yet is a function of
trainable variables, then the gradient will be incorrect!

8.1. Subpackages 145

InferPy Documentation, Release 1.0

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.StudentT(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for StudentT.

See StudentT for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Student’s t distributions.

The distributions have degree of freedom df, mean loc, and scale scale.

The parameters df, loc, and scale must be shaped in a way that supports broadcasting (e.g. df + loc + scale is a
valid operation).

Parameters

• df – Floating-point Tensor. The degrees of freedom of the distribution(s). df must contain
only positive values.

• loc – Floating-point Tensor. The mean(s) of the distribution(s).

• scale – Floating-point Tensor. The scaling factor(s) for the distribution(s). Note that scale
is not technically the standard deviation of this distribution but has semantics more similar
to standard deviation than variance.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if loc and scale are different dtypes.

inferpy.models.StudentTProcess(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

146 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for StudentTProcess.

See StudentTProcess for more details.

Returns RandomVariable.

Original Docstring for Distribution

Instantiate a StudentTProcess Distribution.

Parameters

• df – Positive Floating-point Tensor representing the degrees of freedom. Must be greater
than 2.

• kernel – PositiveSemidefiniteKernel-like instance representing the TP’s covariance func-
tion.

• index_points – float Tensor representing finite (batch of) vector(s) of points in the in-
dex set over which the TP is defined. Shape has the form [b1, . . . , bB, e, f1, . . . , fF] where
F is the number of feature dimensions and must equal kernel.feature_ndims and e is the
number (size) of index points in each batch. Ultimately this distribution corresponds to a
e-dimensional multivariate Student’s T. The batch shape must be broadcastable with ker-
nel.batch_shape and any batch dims yielded by mean_fn.

• mean_fn – Python callable that acts on index_points to produce a (batch of) vector(s) of
mean values at index_points. Takes a Tensor of shape [b1, . . . , bB, f1, . . . , fF] and returns
a Tensor whose shape is broadcastable with [b1, . . . , bB]. Default value: None implies
constant zero function.

• jitter – float scalar Tensor added to the diagonal of the covariance matrix to ensure
positive definiteness of the covariance matrix. Default value: 1e-6.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: False.

• name – Python str name prefixed to Ops created by this class. Default value: “StudentTPro-
cess”.

Raises ValueError – if mean_fn is not None and is not callable.

inferpy.models.ConditionalTransformedDistribution(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

8.1. Subpackages 147

InferPy Documentation, Release 1.0

Random Variable information:

Create a random variable for ConditionalTransformedDistribution.

See ConditionalTransformedDistribution for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a Transformed Distribution.

Parameters

• distribution – The base distribution instance to transform. Typically an instance of
Distribution.

• bijector – The object responsible for calculating the transformation. Typically an in-
stance of Bijector.

• batch_shape – integer vector Tensor which overrides distribution batch_shape; valid
only if distribution.is_scalar_batch().

• event_shape – integer vector Tensor which overrides distribution event_shape; valid
only if distribution.is_scalar_event().

• kwargs_split_fn – Python callable which takes a kwargs dict and returns a tuple of
kwargs dict‘s for each of the ‘distribution and bijector parameters respectively. Default
value: _default_kwargs_split_fn (i.e.,

‘lambda kwargs: (kwargs.get(‘distribution_kwargs’, {}),
kwargs.get(‘bijector_kwargs’, {}))‘)

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• parameters – Locals dict captured by subclass constructor, to be used for copy/slice
re-instantiation operations.

• name – Python str name prefixed to Ops created by this class. Default: bijector.name +
distribution.name.

inferpy.models.TransformedDistribution(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for TransformedDistribution.

See TransformedDistribution for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct a Transformed Distribution.

Parameters

148 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• distribution – The base distribution instance to transform. Typically an instance of
Distribution.

• bijector – The object responsible for calculating the transformation. Typically an in-
stance of Bijector.

• batch_shape – integer vector Tensor which overrides distribution batch_shape; valid
only if distribution.is_scalar_batch().

• event_shape – integer vector Tensor which overrides distribution event_shape; valid
only if distribution.is_scalar_event().

• kwargs_split_fn – Python callable which takes a kwargs dict and returns a tuple of
kwargs dict‘s for each of the ‘distribution and bijector parameters respectively. Default
value: _default_kwargs_split_fn (i.e.,

‘lambda kwargs: (kwargs.get(‘distribution_kwargs’, {}),
kwargs.get(‘bijector_kwargs’, {}))‘)

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• parameters – Locals dict captured by subclass constructor, to be used for copy/slice
re-instantiation operations.

• name – Python str name prefixed to Ops created by this class. Default: bijector.name +
distribution.name.

inferpy.models.Triangular(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Triangular.

See Triangular for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Triangular distributions.

Parameters

• low – Floating point tensor, lower boundary of the output interval. Must have low < high.
Default value: 0.

• high – Floating point tensor, upper boundary of the output interval. Must have low < high.
Default value: 1.

• peak – Floating point tensor, mode of the output interval. Must have low <= peak and peak
<= high. Default value: 0.5.

8.1. Subpackages 149

InferPy Documentation, Release 1.0

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: True.

• name – Python str name prefixed to Ops created by this class. Default value: ‘Triangular’.

Raises InvalidArgumentError – if validate_args=True and one of the following is True: *
low >= high. * peak > high. * low > peak.

inferpy.models.TruncatedNormal(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for TruncatedNormal.

See TruncatedNormal for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct TruncatedNormal.

All parameters of the distribution will be broadcast to the same shape, so the resulting distribution will have a
batch_shape of the broadcast shape of all parameters.

Parameters

• loc – Floating point tensor; the mean of the normal distribution(s) (note that the mean of
the resulting distribution will be different since it is modified by the bounds).

• scale – Floating point tensor; the std deviation of the normal distribution(s).

• low – float Tensor representing lower bound of the distribution’s support. Must be such that
low < high.

• high – float Tensor representing upper bound of the distribution’s support. Must be such
that low < high.

• validate_args – Python bool, default False. When True distribution parameters are
checked at run-time.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

inferpy.models.Uniform(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

150 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Uniform.

See Uniform for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Uniform distributions.

Parameters

• low – Floating point tensor, lower boundary of the output interval. Must have low < high.

• high – Floating point tensor, upper boundary of the output interval. Must have low < high.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises InvalidArgumentError – if low >= high and validate_args=False.

inferpy.models.VariationalGaussianProcess(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VariationalGaussianProcess.

See VariationalGaussianProcess for more details.

Returns RandomVariable.

Original Docstring for Distribution

Instantiate a VariationalGaussianProcess Distribution.

Parameters

• kernel – PositiveSemidefiniteKernel-like instance representing the GP’s covariance func-
tion.

• index_points – float Tensor representing finite (batch of) vector(s) of points in the index
set over which the VGP is defined. Shape has the form [b1, . . . , bB, e1, f1, . . . , fF] where
F is the number of feature dimensions and must equal kernel.feature_ndims and e1 is the

8.1. Subpackages 151

InferPy Documentation, Release 1.0

number (size) of index points in each batch (we denote it e1 to distinguish it from the numer
of inducing index points, denoted e2 below). Ultimately the VariationalGaussianProcess
distribution corresponds to an e1-dimensional multivariate normal. The batch shape must
be broadcastable with kernel.batch_shape, the batch shape of inducing_index_points, and
any batch dims yielded by mean_fn.

• inducing_index_points – float Tensor of locations of inducing points in the index
set. Shape has the form [b1, . . . , bB, e2, f1, . . . , fF], just like index_points. The batch shape
components needn’t be identical to those of index_points, but must be broadcast compatible
with them.

• variational_inducing_observations_loc – float Tensor; the mean of the
(full-rank Gaussian) variational posterior over function values at the inducing points, condi-
tional on observed data. Shape has the form [b1, . . . , bB, e2], where b1, . . . , bB is broadcast
compatible with other parameters’ batch shapes, and e2 is the number of inducing points.

• variational_inducing_observations_scale – float Tensor; the scale matrix
of the (full-rank Gaussian) variational posterior over function values at the inducing points,
conditional on observed data. Shape has the form [b1, . . . , bB, e2, e2], where b1, . . . , bB is
broadcast compatible with other parameters and e2 is the number of inducing points.

• mean_fn – Python callable that acts on index points to produce a (batch of) vector(s) of
mean values at those index points. Takes a Tensor of shape [b1, . . . , bB, f1, . . . , fF] and
returns a Tensor whose shape is (broadcastable with) [b1, . . . , bB]. Default value: None
implies constant zero function.

• observation_noise_variance – float Tensor representing the variance of the noise
in the Normal likelihood distribution of the model. May be batched, in which case the
batch shape must be broadcastable with the shapes of all other batched parameters (ker-
nel.batch_shape, index_points, etc.). Default value: 0.

• predictive_noise_variance – float Tensor representing additional variance in the
posterior predictive model. If None, we simply re-use observation_noise_variance for the
posterior predictive noise. If set explicitly, however, we use the given value. This allows us,
for example, to omit predictive noise variance (by setting this to zero) to obtain noiseless
posterior predictions of function values, conditioned on noisy observations.

• jitter – float scalar Tensor added to the diagonal of the covariance matrix to ensure
positive definiteness of the covariance matrix. Default value: 1e-6.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: False.

• name – Python str name prefixed to Ops created by this class. Default value: “Variational-
GaussianProcess”.

Raises ValueError – if mean_fn is not None and is not callable.

inferpy.models.VectorDiffeomixture(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

152 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorDiffeomixture.

See VectorDiffeomixture for more details.

Returns RandomVariable.

Original Docstring for Distribution

Constructs the VectorDiffeomixture on R^d.

The vector diffeomixture (VDM) approximates the compound distribution

`none p(x) = int p(x | z) p(z) dz, where z is in the K-simplex, and p(x |
z) := p(x | loc=sum_k z[k] loc[k], scale=sum_k z[k] scale[k]) `

Parameters

• mix_loc – float-like Tensor with shape [b1, . . . , bB, K-1]. In terms of samples, larger
mix_loc[. . . , k] ==> Z is more likely to put more weight on its kth component.

• temperature – float-like Tensor. Broadcastable with mix_loc. In terms of samples,
smaller temperature means one component is more likely to dominate. I.e., smaller temper-
ature makes the VDM look more like a standard mixture of K components.

• distribution – tfp.distributions.Distribution-like instance. Distribution from which
d iid samples are used as input to the selected affine transformation. Must be a
scalar-batch, scalar-event distribution. Typically distribution.reparameterization_type =
FULLY_REPARAMETERIZED or it is a function of non-trainable parameters. WARN-
ING: If you backprop through a VectorDiffeomixture sample and the distribution is not
FULLY_REPARAMETERIZED yet is a function of trainable variables, then the gradient
will be incorrect!

• loc – Length-K list of float-type Tensor‘s. The ‘k-th element represents the shift used for
the k-th affine transformation. If the k-th item is None, loc is implicitly 0. When specified,
must have shape [B1, . . . , Bb, d] where b >= 0 and d is the event size.

• scale – Length-K list of LinearOperator‘s. Each should be positive-definite and operate
on a ‘d-dimensional vector space. The k-th element represents the scale used for the k-th
affine transformation. LinearOperator‘s must have shape ‘[B1, . . . , Bb, d, d], b >= 0, i.e.,
characterizes b-batches of d x d matrices

• quadrature_size – Python int scalar representing number of quadrature points. Larger
quadrature_size means q_N(x) better approximates p(x).

• quadrature_fn – Python callable taking normal_loc, normal_scale, quadrature_size,
validate_args and returning tuple(grid, probs) representing the SoftmaxNormal grid
and corresponding normalized weight. normalized) weight. Default value: quadra-
ture_scheme_softmaxnormal_quantiles.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises

8.1. Subpackages 153

InferPy Documentation, Release 1.0

• ValueError – if not scale or len(scale) < 2.

• ValueError – if len(loc) != len(scale)

• ValueError – if quadrature_grid_and_probs is not None and
len(quadrature_grid_and_probs[0]) != len(quadrature_grid_and_probs[1])

• ValueError – if validate_args and any not scale.is_positive_definite.

• TypeError – if any scale.dtype != scale[0].dtype.

• TypeError – if any loc.dtype != scale[0].dtype.

• NotImplementedError – if len(scale) != 2.

• ValueError – if not distribution.is_scalar_batch.

• ValueError – if not distribution.is_scalar_event.

inferpy.models.VectorExponentialDiag(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorExponentialDiag.

See VectorExponentialDiag for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Vector Exponential distribution supported on a subset of R^k.

The batch_shape is the broadcast shape between loc and scale arguments.

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc (if
provided) must broadcast with this.

Recall that covariance = scale @ scale.T.

`none scale = diag(scale_diag + scale_identity_multiplier * ones(k)) `

where:

• scale_diag.shape = [k], and,

• scale_identity_multiplier.shape = [].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then scale is the Identity matrix.

Parameters

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

154 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• scale_diag – Non-zero, floating-point Tensor representing a diagonal matrix added to
scale. May have shape [B1, . . . , Bb, k], b >= 0, and characterizes b-batches of k x k diagonal
matrices added to scale. When both scale_identity_multiplier and scale_diag are None then
scale is the Identity.

• scale_identity_multiplier – Non-zero, floating-point Tensor representing a
scaled-identity-matrix added to scale. May have shape [B1, . . . , Bb], b >= 0, and
characterizes b-batches of scaled k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is the Identity.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if at most scale_identity_multiplier is specified.

inferpy.models.VectorLaplaceDiag(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorLaplaceDiag.

See VectorLaplaceDiag for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Vector Laplace distribution on R^k.

The batch_shape is the broadcast shape between loc and scale arguments.

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc (if
provided) must broadcast with this.

Recall that covariance = 2 * scale @ scale.T.

`none scale = diag(scale_diag + scale_identity_multiplier * ones(k)) `

where:

• scale_diag.shape = [k], and,

• scale_identity_multiplier.shape = [].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then scale is the Identity matrix.

Parameters

8.1. Subpackages 155

InferPy Documentation, Release 1.0

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

• scale_diag – Non-zero, floating-point Tensor representing a diagonal matrix added to
scale. May have shape [B1, . . . , Bb, k], b >= 0, and characterizes b-batches of k x k diagonal
matrices added to scale. When both scale_identity_multiplier and scale_diag are None then
scale is the Identity.

• scale_identity_multiplier – Non-zero, floating-point Tensor representing a
scaled-identity-matrix added to scale. May have shape [B1, . . . , Bb], b >= 0, and
characterizes b-batches of scaled k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is the Identity.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if at most scale_identity_multiplier is specified.

inferpy.models.VectorSinhArcsinhDiag(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorSinhArcsinhDiag.

See VectorSinhArcsinhDiag for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct VectorSinhArcsinhDiag distribution on R^k.

The arguments scale_diag and scale_identity_multiplier combine to define the diagonal scale referred to in this
class docstring:

`none scale = diag(scale_diag + scale_identity_multiplier * ones(k)) `

The batch_shape is the broadcast shape between loc and scale arguments.

The event_shape is given by last dimension of the matrix implied by scale. The last dimension of loc (if
provided) must broadcast with this

Additional leading dimensions (if any) will index batches.

Parameters

• loc – Floating-point Tensor. If this is set to None, loc is implicitly 0. When specified, may
have shape [B1, . . . , Bb, k] where b >= 0 and k is the event size.

156 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

• scale_diag – Non-zero, floating-point Tensor representing a diagonal matrix added to
scale. May have shape [B1, . . . , Bb, k], b >= 0, and characterizes b-batches of k x k diagonal
matrices added to scale. When both scale_identity_multiplier and scale_diag are None then
scale is the Identity.

• scale_identity_multiplier – Non-zero, floating-point Tensor representing a
scale-identity-matrix added to scale. May have shape [B1, . . . , Bb], b >= 0, and
characterizes b-batches of scale k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is the Identity.

• skewness – Skewness parameter. floating-point Tensor with shape broadcastable with
event_shape.

• tailweight – Tailweight parameter. floating-point Tensor with shape broadcastable with
event_shape.

• distribution – tf.Distribution-like instance. Distribution from which k iid samples
are used as input to transformation F. Default is tfd.Normal(loc=0., scale=1.). Must be
a scalar-batch, scalar-event distribution. Typically distribution.reparameterization_type =
FULLY_REPARAMETERIZED or it is a function of non-trainable parameters. WARN-
ING: If you backprop through a VectorSinhArcsinhDiag sample and distribution is not
FULLY_REPARAMETERIZED yet is a function of trainable variables, then the gradient
will be incorrect!

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if at most scale_identity_multiplier is specified.

inferpy.models.VonMises(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VonMises.

See VonMises for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct von Mises distributions with given location and concentration.

The parameters loc and concentration must be shaped in a way that supports broadcasting (e.g. loc + concen-
tration is a valid operation).

Parameters

8.1. Subpackages 157

InferPy Documentation, Release 1.0

• loc – Floating point tensor, the circular means of the distribution(s).

• concentration – Floating point tensor, the level of concentration of the distribution(s)
around loc. Must take non-negative values. concentration = 0 defines a Uniform distribu-
tion, while concentration = +inf indicates a Deterministic distribution at loc.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises TypeError – if loc and concentration are different dtypes.

inferpy.models.VonMisesFisher(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VonMisesFisher.

See VonMisesFisher for more details.

Returns RandomVariable.

Original Docstring for Distribution

Creates a new VonMisesFisher instance.

Parameters

• mean_direction – Floating-point Tensor with shape [B1, . . . Bn, D]. A unit vector
indicating the mode of the distribution, or the unit-normalized direction of the mean. (This
is not in general the mean of the distribution; the mean is not generally in the support of the
distribution.) NOTE: D is currently restricted to <= 5.

• concentration – Floating-point Tensor having batch shape [B1, . . . Bn] broadcastable
with mean_direction. The level of concentration of samples around the mean_direction.
concentration=0 indicates a uniform distribution over the unit hypersphere, and concentra-
tion=+inf indicates a Deterministic distribution (delta function) at mean_direction.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – For known-bad arguments, i.e. unsupported event dimension.

158 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

inferpy.models.Wishart(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Wishart.

See Wishart for more details.

Returns RandomVariable.

Original Docstring for Distribution

Construct Wishart distributions.

Parameters

• df – float or double Tensor. Degrees of freedom, must be greater than or equal to dimension
of the scale matrix.

• scale – float or double Tensor. The symmetric positive definite scale matrix of the distri-
bution. Exactly one of scale and ‘scale_tril‘ must be passed.

• scale_tril – float or double Tensor. The Cholesky factorization of the symmetric pos-
itive definite scale matrix of the distribution. Exactly one of scale and ‘scale_tril‘ must be
passed.

• input_output_cholesky – Python bool. If True, functions whose input or output have
the semantics of samples assume inputs are in Cholesky form and return outputs in Cholesky
form. In particular, if this flag is True, input to log_prob is presumed of Cholesky form and
output from sample, mean, and mode are of Cholesky form. Setting this argument to True
is purely a computational optimization and does not change the underlying distribution;
for instance, mean returns the Cholesky of the mean, not the mean of Cholesky factors.
The variance and stddev methods are unaffected by this flag. Default value: False (i.e.,
input/output does not have Cholesky semantics).

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined.

• name – Python str name prefixed to Ops created by this class.

Raises ValueError – if zero or both of ‘scale’ and ‘scale_tril’ are passed in.

inferpy.models.Zipf(*args, **kwargs)

Class for random variables. It encapsulates the Random Variable from edward2, and addi-
tional properties.

• It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

8.1. Subpackages 159

InferPy Documentation, Release 1.0

• The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Zipf.

See Zipf for more details.

Returns RandomVariable.

Original Docstring for Distribution

Initialize a batch of Zipf distributions.

Parameters

• power – Float like Tensor representing the power parameter. Must be strictly greater than
1.

• dtype – The dtype of Tensor returned by sample. Default value: tf.int32.

• interpolate_nondiscrete – Python bool. When False, log_prob returns -inf (and
prob returns 0) for non-integer inputs. When True, log_prob evaluates the continuous func-
tion -power log(k) - log(zeta(power)) , which matches the Zipf pmf at integer arguments k
(note that this function is not itself a normalized probability log-density). Default value:
True.

• sample_maximum_iterations – Maximum number of iterations of allowable itera-
tions in sample. When validate_args=True, samples which fail to reach convergence (sub-
ject to this cap) are masked out with self.dtype.min or nan depending on self.dtype.is_integer.
Default value: 100.

• validate_args – Python bool, default False. When True distribution parameters are
checked for validity despite possibly degrading runtime performance. When False invalid
inputs may silently render incorrect outputs. Default value: False.

• allow_nan_stats – Python bool, default True. When True, statistics (e.g., mean, mode,
variance) use the value “NaN” to indicate the result is undefined. When False, an exception
is raised if one or more of the statistic’s batch members are undefined. Default value: False.

• name – Python str name prefixed to Ops created by this class. Default value: ‘Zipf’.

Raises TypeError – if power is not float like.

8.1.5 inferpy.queries package

Submodules

inferpy.queries.query module

class inferpy.queries.query.Query(variables, target_names=None, data={})
Bases: object

log_prob()
Computes the log probabilities of a (set of) sample(s)

parameters(names=None)
Return the parameters of the Random Variables of the model. If names is None, then return all the pa-
rameters of all the Random Variables. If names is a list, then return the parameters specified in the list (if
exists) for all the Random Variables. If names is a dict, then return all the parameters specified (value) for
each Random Variable (key).

160 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

NOTE: If tf_run=True, but any of the returned parameters is not a Tensor *and therefore cannot be evaluated)
this returns a not evaluated dict (because the evaluation will raise an Exception)

Parameters names – A list, a dict or None. Specify the parameters for the Random Variables
to be obtained.

Returns A dict, where the keys are the names of the Random Variables and the values a dict of
parameters (name-value)

sample(size=1)
Generates a sample for eache variable in the model

sum_log_prob()
Computes the sum of the log probabilities (evaluated) of a (set of) sample(s)

inferpy.queries.query.flatten_result(f)

Module contents

class inferpy.queries.Query(variables, target_names=None, data={})
Bases: object

log_prob()
Computes the log probabilities of a (set of) sample(s)

parameters(names=None)
Return the parameters of the Random Variables of the model. If names is None, then return all the pa-
rameters of all the Random Variables. If names is a list, then return the parameters specified in the list (if
exists) for all the Random Variables. If names is a dict, then return all the parameters specified (value) for
each Random Variable (key).

NOTE: If tf_run=True, but any of the returned parameters is not a Tensor *and therefore cannot be evaluated)
this returns a not evaluated dict (because the evaluation will raise an Exception)

Parameters names – A list, a dict or None. Specify the parameters for the Random Variables
to be obtained.

Returns A dict, where the keys are the names of the Random Variables and the values a dict of
parameters (name-value)

sample(size=1)
Generates a sample for eache variable in the model

sum_log_prob()
Computes the sum of the log probabilities (evaluated) of a (set of) sample(s)

8.1.6 inferpy.util package

Submodules

inferpy.util.interceptor module

inferpy.util.interceptor.set_values(**model_kwargs)
Creates a value-setting interceptor. Usable as a parameter of the ed2.interceptor.

Model_kwargs The name of each argument must be the name of a random variable to intercept, and
the value is the element which intercepts the value of the random variable.

8.1. Subpackages 161

InferPy Documentation, Release 1.0

Returns The random variable with the intercepted value

inferpy.util.interceptor.set_values_condition(var_condition, var_value)
Creates a value-setting interceptor. Usable as a parameter of the ed2.interceptor.

Var_condition (tf.Variable)tf.Variable) The boolean tf.Variable, used to intercept the value prop-
erty with value_var or the variable value property itself

Var_value (tf.Variable)tf.Variable) The tf.Variable used to intercept the value property when
var_condition is True

Returns The random variable with the intercepted value

inferpy.util.iterables module

inferpy.util.iterables.get_plate_size(variables, sample_dict)

inferpy.util.iterables.get_shape(x)
Get the shape of an element x. If it is an element with a shape attribute, return it. If it is a list with more than
one element, compute the shape by checking the len, and the shape of internal elements. In that case, the shape
must be consistent. Finally, in other case return () as shape.

Parameters x – The element to compute its shape

:raises : class ValueError: list shape not consistent :returns: A tuple with the shape of x

inferpy.util.name module

inferpy.util.name.generate(prefix)
This function is used to generate names based on an incremental counter (global variable in this module) depen-
dent on the prefix (staring from 0 index)

Prefix (str)str) The begining of the random generated name

Returns The generated random name

inferpy.util.runtime module

Module focused on evaluating tensors to makes the usage easier, forgetting about tensors and sessions

inferpy.util.runtime.runner_scope()

inferpy.util.runtime.set_tf_run(enable)

inferpy.util.runtime.tf_run_allowed(f)
A function might return a tensor or not. In order to decide if the result of this function needs to be evaluated in
a tf session or not, use the tf_run extra parameter or the tf_run_default value. If True, and this function is in the
first level of execution depth, use a tf Session to evaluate the tensor or other evaluable object (like dicts)

inferpy.util.runtime.tf_run_ignored(f)
A function might call other functions decorated with tf_run_allowed. This decorator is used to avoid that such
functions are evaluated.

inferpy.util.runtime.try_run(obj)

162 Chapter 8. inferpy package

InferPy Documentation, Release 1.0

inferpy.util.session module

inferpy.util.session.clear_session()

inferpy.util.session.get_session()

inferpy.util.session.new_session(gpu_memory_fraction=0.0)

inferpy.util.session.set_session(session)

inferpy.util.session.swap_session(new_session)

inferpy.util.tf_graph module

inferpy.util.tf_graph.get_empty_graph()

inferpy.util.tf_graph.get_graph(varnames)

Module contents

Package with modules defining functions, classes and variables which are useful for the main functionality provided
by inferpy

inferpy.util.floatx()
Returns the default float type, as a string. (e.g. ‘float16’, ‘float32’, ‘float64’). # Returns

String, the current default float type.

Example ‘‘‘python

>>> inf.floatx()
'float32'

‘‘‘

inferpy.util.set_floatx(floatx)
Sets the default float type. # Arguments

floatx: String, ‘float16’, ‘float32’, or ‘float64’.

Example ‘‘‘python

>>> from keras import backend as K
>>> inf.floatx()
'float32'
>>> inf.set_floatx('float16')
>>> inf..floatx()
'float16'

‘‘‘

inferpy.util.set_tf_run(enable)

inferpy.util.tf_run_allowed(f)
A function might return a tensor or not. In order to decide if the result of this function needs to be evaluated in
a tf session or not, use the tf_run extra parameter or the tf_run_default value. If True, and this function is in the
first level of execution depth, use a tf Session to evaluate the tensor or other evaluable object (like dicts)

inferpy.util.tf_run_ignored(f)
A function might call other functions decorated with tf_run_allowed. This decorator is used to avoid that such
functions are evaluated.

8.1. Subpackages 163

InferPy Documentation, Release 1.0

inferpy.util.get_session()

inferpy.util.set_session(session)

inferpy.util.clear_session()

8.2 Module contents

164 Chapter 8. inferpy package

CHAPTER

NINE

CONTACT AND SUPPORT

If you have any question about the toolbox or if you want to collaborate in the project, please do not hesitate to contact
us. You can do it through the following email address: inferpy.api@gmail.com

For more technical questions, please use Github issues.

165

mailto:inferpy.api@gmail.com
https://github.com/PGM-Lab/InferPy/issues
https://travis-ci.org/PGM-Lab/InferPy

InferPy Documentation, Release 1.0

166 Chapter 9. Contact and Support

PYTHON MODULE INDEX

c
inferpy.contextmanager, 32
inferpy.contextmanager.data_model, 31
inferpy.contextmanager.evidence, 31
inferpy.contextmanager.randvar_registry,

31

d
inferpy.datasets, 32
inferpy.datasets.mnist, 32

i
inferpy, 164
inferpy.inference, 34
inferpy.inference.inference, 33
inferpy.inference.variational, 33
inferpy.inference.variational.loss_functions,

33
inferpy.inference.variational.loss_functions.elbo,

32
inferpy.inference.variational.svi, 33
inferpy.inference.variational.vi, 33

m
inferpy.models, 98
inferpy.models.parameter, 34
inferpy.models.prob_model, 34
inferpy.models.random_variable, 35

q
inferpy.queries, 161
inferpy.queries.query, 160

u
inferpy.util, 163
inferpy.util.interceptor, 161
inferpy.util.iterables, 162
inferpy.util.name, 162
inferpy.util.runtime, 162
inferpy.util.session, 163
inferpy.util.tf_graph, 163

167

InferPy Documentation, Release 1.0

168 Python Module Index

INDEX

A
Autoregressive() (in module inferpy.models), 98
Autoregressive() (in module in-

ferpy.models.random_variable), 35

B
BatchReshape() (in module inferpy.models), 99
BatchReshape() (in module in-

ferpy.models.random_variable), 36
Bernoulli() (in module inferpy.models), 99
Bernoulli() (in module in-

ferpy.models.random_variable), 36
Beta() (in module inferpy.models), 100
Beta() (in module inferpy.models.random_variable),

37
Binomial() (in module inferpy.models), 101
Binomial() (in module in-

ferpy.models.random_variable), 38
Blockwise() (in module inferpy.models), 101
Blockwise() (in module in-

ferpy.models.random_variable), 39
build_in_session() (in-

ferpy.models.random_variable.RandomVariable
method), 80

C
Categorical() (in module inferpy.models), 102
Categorical() (in module in-

ferpy.models.random_variable), 39
Cauchy() (in module inferpy.models), 103
Cauchy() (in module in-

ferpy.models.random_variable), 40
Chi() (in module inferpy.models), 104
Chi() (in module inferpy.models.random_variable), 41
Chi2() (in module inferpy.models), 104
Chi2() (in module inferpy.models.random_variable),

41
Chi2WithAbsDf() (in module inferpy.models), 105
Chi2WithAbsDf() (in module in-

ferpy.models.random_variable), 42
clear_session() (in module inferpy.util), 164

clear_session() (in module inferpy.util.session),
163

compile() (inferpy.inference.inference.Inference
method), 34

compile() (inferpy.inference.SVI method), 34
compile() (inferpy.inference.variational.svi.SVI

method), 33
compile() (inferpy.inference.variational.vi.VI

method), 33
compile() (inferpy.inference.VI method), 34
ConditionalDistribution() (in module in-

ferpy.models), 108
ConditionalDistribution() (in module in-

ferpy.models.random_variable), 42
ConditionalTransformedDistribution() (in

module inferpy.models), 147
ConditionalTransformedDistribution() (in

module inferpy.models.random_variable), 43
copy() (inferpy.models.random_variable.RandomVariable

method), 80
create_input_data_tensor() (in-

ferpy.inference.SVI method), 34
create_input_data_tensor() (in-

ferpy.inference.variational.svi.SVI method),
33

D
datamodel() (in module in-

ferpy.contextmanager.data_model), 31
datamodel() (in module inferpy.models), 98
Deterministic() (in module inferpy.models), 105
Deterministic() (in module in-

ferpy.models.random_variable), 44
Dirichlet() (in module inferpy.models), 107
Dirichlet() (in module in-

ferpy.models.random_variable), 44
DirichletMultinomial() (in module in-

ferpy.models), 107
DirichletMultinomial() (in module in-

ferpy.models.random_variable), 45
Distribution() (in module inferpy.models), 109
Distribution() (in module in-

169

InferPy Documentation, Release 1.0

ferpy.models.random_variable), 46

E
ELBO() (in module in-

ferpy.inference.variational.loss_functions),
33

ELBO() (in module in-
ferpy.inference.variational.loss_functions.elbo),
32

Empirical() (in module inferpy.models), 109
Empirical() (in module in-

ferpy.models.random_variable), 46
expand_model() (in-

ferpy.models.prob_model.ProbModel method),
35

Exponential() (in module inferpy.models), 110
Exponential() (in module in-

ferpy.models.random_variable), 48
ExpRelaxedOneHotCategorical() (in module

inferpy.models), 143
ExpRelaxedOneHotCategorical() (in module

inferpy.models.random_variable), 47

F
FiniteDiscrete() (in module inferpy.models), 111
FiniteDiscrete() (in module in-

ferpy.models.random_variable), 48
fit() (in module inferpy.contextmanager.data_model),

31
fit() (inferpy.models.prob_model.ProbModel method),

35
flatten_result() (in module in-

ferpy.queries.query), 161
floatx() (in module inferpy.util), 163

G
Gamma() (in module inferpy.models), 111
Gamma() (in module inferpy.models.random_variable),

49
GammaGamma() (in module inferpy.models), 112
GammaGamma() (in module in-

ferpy.models.random_variable), 50
GaussianProcess() (in module inferpy.models), 113
GaussianProcess() (in module in-

ferpy.models.random_variable), 51
GaussianProcessRegressionModel() (in mod-

ule inferpy.models), 114
GaussianProcessRegressionModel() (in mod-

ule inferpy.models.random_variable), 52
generate() (in module inferpy.util.name), 162
Geometric() (in module inferpy.models), 115
Geometric() (in module in-

ferpy.models.random_variable), 53

get_empty_graph() (in module in-
ferpy.util.tf_graph), 163

get_graph() (in module in-
ferpy.contextmanager.randvar_registry),
31

get_graph() (in module inferpy.util.tf_graph), 163
get_plate_size() (in module inferpy.util.iterables),

162
get_sample_shape() (in module in-

ferpy.contextmanager.data_model), 31
get_session() (in module inferpy.util), 163
get_session() (in module inferpy.util.session), 163
get_shape() (in module inferpy.util.iterables), 162
get_var_parameters() (in module in-

ferpy.contextmanager.randvar_registry),
31

get_variable() (in module in-
ferpy.contextmanager.randvar_registry),
31

get_variable_or_parameter() (in module in-
ferpy.contextmanager.randvar_registry), 31

GLOBAL_HIDDEN (in-
ferpy.models.random_variable.Kind attribute),
62

GLOBAL_OBSERVED (in-
ferpy.models.random_variable.Kind attribute),
62

Gumbel() (in module inferpy.models), 116
Gumbel() (in module in-

ferpy.models.random_variable), 54

H
HalfCauchy() (in module inferpy.models), 117
HalfCauchy() (in module in-

ferpy.models.random_variable), 54
HalfNormal() (in module inferpy.models), 117
HalfNormal() (in module in-

ferpy.models.random_variable), 55
HiddenMarkovModel() (in module inferpy.models),

118
HiddenMarkovModel() (in module in-

ferpy.models.random_variable), 56
Horseshoe() (in module inferpy.models), 119
Horseshoe() (in module in-

ferpy.models.random_variable), 57

I
Independent() (in module inferpy.models), 119
Independent() (in module in-

ferpy.models.random_variable), 57
Inference (class in inferpy.inference.inference), 33
inferpy (module), 164
inferpy.contextmanager (module), 32

170 Index

InferPy Documentation, Release 1.0

inferpy.contextmanager.data_model (mod-
ule), 31

inferpy.contextmanager.evidence (module),
31

inferpy.contextmanager.randvar_registry
(module), 31

inferpy.datasets (module), 32
inferpy.datasets.mnist (module), 32
inferpy.inference (module), 34
inferpy.inference.inference (module), 33
inferpy.inference.variational (module), 33
inferpy.inference.variational.loss_functions

(module), 33
inferpy.inference.variational.loss_functions.elbo

(module), 32
inferpy.inference.variational.svi (mod-

ule), 33
inferpy.inference.variational.vi (mod-

ule), 33
inferpy.models (module), 98
inferpy.models.parameter (module), 34
inferpy.models.prob_model (module), 34
inferpy.models.random_variable (module),

35
inferpy.queries (module), 161
inferpy.queries.query (module), 160
inferpy.util (module), 163
inferpy.util.interceptor (module), 161
inferpy.util.iterables (module), 162
inferpy.util.name (module), 162
inferpy.util.runtime (module), 162
inferpy.util.session (module), 163
inferpy.util.tf_graph (module), 163
init() (in module in-

ferpy.contextmanager.randvar_registry),
31

InverseGamma() (in module inferpy.models), 120
InverseGamma() (in module in-

ferpy.models.random_variable), 58
InverseGaussian() (in module inferpy.models), 121
InverseGaussian() (in module in-

ferpy.models.random_variable), 59
is_active() (in module in-

ferpy.contextmanager.data_model), 31
is_building_graph() (in module in-

ferpy.contextmanager.randvar_registry),
31

is_default() (in module in-
ferpy.contextmanager.randvar_registry),
31

J
JointDistribution() (in module inferpy.models),

121

JointDistribution() (in module in-
ferpy.models.random_variable), 59

JointDistributionCoroutine() (in module in-
ferpy.models), 122

JointDistributionCoroutine() (in module in-
ferpy.models.random_variable), 60

JointDistributionNamed() (in module in-
ferpy.models), 123

JointDistributionNamed() (in module in-
ferpy.models.random_variable), 60

JointDistributionSequential() (in module
inferpy.models), 123

JointDistributionSequential() (in module
inferpy.models.random_variable), 61

K
Kind (class in inferpy.models.random_variable), 61
Kumaraswamy() (in module inferpy.models), 124
Kumaraswamy() (in module in-

ferpy.models.random_variable), 62

L
Laplace() (in module inferpy.models), 124
Laplace() (in module in-

ferpy.models.random_variable), 63
LinearGaussianStateSpaceModel() (in mod-

ule inferpy.models), 125
LinearGaussianStateSpaceModel() (in mod-

ule inferpy.models.random_variable), 64
LKJ() (in module inferpy.models), 126
LKJ() (in module inferpy.models.random_variable), 62
load_data() (in module inferpy.datasets.mnist), 32
LOCAL_HIDDEN (inferpy.models.random_variable.Kind

attribute), 62
LOCAL_OBSERVED (in-

ferpy.models.random_variable.Kind attribute),
62

log_prob() (inferpy.inference.inference.Inference
method), 34

log_prob() (inferpy.inference.variational.vi.VI
method), 33

log_prob() (inferpy.inference.VI method), 34
log_prob() (inferpy.queries.Query method), 161
log_prob() (inferpy.queries.query.Query method),

160
Logistic() (in module inferpy.models), 127
Logistic() (in module in-

ferpy.models.random_variable), 65
LogNormal() (in module inferpy.models), 127
LogNormal() (in module in-

ferpy.models.random_variable), 65
losses() (inferpy.inference.variational.vi.VI prop-

erty), 33
losses() (inferpy.inference.VI property), 34

Index 171

InferPy Documentation, Release 1.0

M
Mixture() (in module inferpy.models), 128
Mixture() (in module in-

ferpy.models.random_variable), 66
MixtureSameFamily() (in module inferpy.models),

129
MixtureSameFamily() (in module in-

ferpy.models.random_variable), 67
Multinomial() (in module inferpy.models), 130
Multinomial() (in module in-

ferpy.models.random_variable), 68
MultivariateNormalDiag() (in module in-

ferpy.models), 132
MultivariateNormalDiag() (in module in-

ferpy.models.random_variable), 69
MultivariateNormalDiagPlusLowRank() (in

module inferpy.models), 133
MultivariateNormalDiagPlusLowRank() (in

module inferpy.models.random_variable), 70
MultivariateNormalDiagWithSoftplusScale()

(in module inferpy.models), 133
MultivariateNormalDiagWithSoftplusScale()

(in module inferpy.models.random_variable),
71

MultivariateNormalFullCovariance() (in
module inferpy.models), 134

MultivariateNormalFullCovariance() (in
module inferpy.models.random_variable), 72

MultivariateNormalLinearOperator() (in
module inferpy.models), 135

MultivariateNormalLinearOperator() (in
module inferpy.models.random_variable), 72

MultivariateNormalTriL() (in module in-
ferpy.models), 136

MultivariateNormalTriL() (in module in-
ferpy.models.random_variable), 73

MultivariateStudentTLinearOperator() (in
module inferpy.models), 131

MultivariateStudentTLinearOperator() (in
module inferpy.models.random_variable), 74

N
NegativeBinomial() (in module inferpy.models),

137
NegativeBinomial() (in module in-

ferpy.models.random_variable), 75
new_session() (in module inferpy.util.session), 163
Normal() (in module inferpy.models), 138
Normal() (in module in-

ferpy.models.random_variable), 76

O
observe() (in module in-

ferpy.contextmanager.evidence), 31

OneHotCategorical() (in module inferpy.models),
138

OneHotCategorical() (in module in-
ferpy.models.random_variable), 76

P
Parameter (class in inferpy.models), 98
Parameter (class in inferpy.models.parameter), 34
parameters() (inferpy.inference.inference.Inference

method), 34
parameters() (inferpy.inference.variational.vi.VI

method), 33
parameters() (inferpy.inference.VI method), 34
parameters() (inferpy.queries.Query method), 161
parameters() (inferpy.queries.query.Query method),

160
Pareto() (in module inferpy.models), 139
Pareto() (in module in-

ferpy.models.random_variable), 77
plot_digits() (in module inferpy.datasets.mnist), 32
plot_graph() (inferpy.models.prob_model.ProbModel

method), 35
Poisson() (in module inferpy.models), 140
Poisson() (in module in-

ferpy.models.random_variable), 78
PoissonLogNormalQuadratureCompound() (in

module inferpy.models), 141
PoissonLogNormalQuadratureCompound() (in

module inferpy.models.random_variable), 78
posterior() (inferpy.models.prob_model.ProbModel

method), 35
posterior_predictive() (in-

ferpy.models.prob_model.ProbModel method),
35

prior() (inferpy.models.prob_model.ProbModel
method), 35

ProbModel (class in inferpy.models.prob_model), 34
probmodel() (in module inferpy.models), 98
probmodel() (in module inferpy.models.prob_model),

35

Q
QuantizedDistribution() (in module in-

ferpy.models), 141
QuantizedDistribution() (in module in-

ferpy.models.random_variable), 79
Query (class in inferpy.queries), 161
Query (class in inferpy.queries.query), 160

R
RandomVariable (class in in-

ferpy.models.random_variable), 80

172 Index

InferPy Documentation, Release 1.0

register_parameter() (in module in-
ferpy.contextmanager.randvar_registry),
31

register_variable() (in module in-
ferpy.contextmanager.randvar_registry),
32

RelaxedBernoulli() (in module inferpy.models),
142

RelaxedBernoulli() (in module in-
ferpy.models.random_variable), 80

RelaxedOneHotCategorical() (in module in-
ferpy.models), 144

RelaxedOneHotCategorical() (in module in-
ferpy.models.random_variable), 81

restart_default() (in module in-
ferpy.contextmanager.randvar_registry),
32

runner_scope() (in module inferpy.util.runtime),
162

S
Sample() (in module inferpy.models), 144
Sample() (in module in-

ferpy.models.random_variable), 82
sample() (inferpy.inference.inference.Inference

method), 34
sample() (inferpy.inference.variational.vi.VI method),

33
sample() (inferpy.inference.VI method), 34
sample() (inferpy.queries.Query method), 161
sample() (inferpy.queries.query.Query method), 161
set_floatx() (in module inferpy.util), 163
set_session() (in module inferpy.util), 164
set_session() (in module inferpy.util.session), 163
set_tf_run() (in module inferpy.util), 163
set_tf_run() (in module inferpy.util.runtime), 162
set_values() (in module inferpy.util.interceptor),

161
set_values_condition() (in module in-

ferpy.util.interceptor), 162
SinhArcsinh() (in module inferpy.models), 145
SinhArcsinh() (in module in-

ferpy.models.random_variable), 82
StudentT() (in module inferpy.models), 146
StudentT() (in module in-

ferpy.models.random_variable), 83
StudentTProcess() (in module inferpy.models), 146
StudentTProcess() (in module in-

ferpy.models.random_variable), 84
sum_log_prob() (in-

ferpy.inference.inference.Inference method),
34

sum_log_prob() (inferpy.queries.Query method),
161

sum_log_prob() (inferpy.queries.query.Query
method), 161

SVI (class in inferpy.inference), 34
SVI (class in inferpy.inference.variational.svi), 33
swap_session() (in module inferpy.util.session), 163

T
tf_run_allowed() (in module inferpy.util), 163
tf_run_allowed() (in module inferpy.util.runtime),

162
tf_run_ignored() (in module inferpy.util), 163
tf_run_ignored() (in module inferpy.util.runtime),

162
TransformedDistribution() (in module in-

ferpy.models), 148
TransformedDistribution() (in module in-

ferpy.models.random_variable), 85
Triangular() (in module inferpy.models), 149
Triangular() (in module in-

ferpy.models.random_variable), 86
TruncatedNormal() (in module inferpy.models), 150
TruncatedNormal() (in module in-

ferpy.models.random_variable), 86
try_run() (in module inferpy.util.runtime), 162
type() (inferpy.models.random_variable.RandomVariable

property), 80

U
Uniform() (in module inferpy.models), 150
Uniform() (in module in-

ferpy.models.random_variable), 87
update() (inferpy.inference.inference.Inference

method), 34
update() (inferpy.inference.SVI method), 34
update() (inferpy.inference.variational.svi.SVI

method), 33
update() (inferpy.inference.variational.vi.VI method),

33
update() (inferpy.inference.VI method), 34
update() (inferpy.models.prob_model.ProbModel

method), 35
update_graph() (in module in-

ferpy.contextmanager.randvar_registry),
32

V
VariationalGaussianProcess() (in module in-

ferpy.models), 151
VariationalGaussianProcess() (in module in-

ferpy.models.random_variable), 88
VectorDeterministic() (in module in-

ferpy.models), 106
VectorDeterministic() (in module in-

ferpy.models.random_variable), 89

Index 173

InferPy Documentation, Release 1.0

VectorDiffeomixture() (in module in-
ferpy.models), 152

VectorDiffeomixture() (in module in-
ferpy.models.random_variable), 90

VectorExponentialDiag() (in module in-
ferpy.models), 154

VectorExponentialDiag() (in module in-
ferpy.models.random_variable), 91

VectorLaplaceDiag() (in module inferpy.models),
155

VectorLaplaceDiag() (in module in-
ferpy.models.random_variable), 92

VectorSinhArcsinhDiag() (in module in-
ferpy.models), 156

VectorSinhArcsinhDiag() (in module in-
ferpy.models.random_variable), 93

VI (class in inferpy.inference), 34
VI (class in inferpy.inference.variational.vi), 33
VonMises() (in module inferpy.models), 157
VonMises() (in module in-

ferpy.models.random_variable), 94
VonMisesFisher() (in module inferpy.models), 158
VonMisesFisher() (in module in-

ferpy.models.random_variable), 95

W
Wishart() (in module inferpy.models), 158
Wishart() (in module in-

ferpy.models.random_variable), 96

Z
Zipf() (in module inferpy.models), 159
Zipf() (in module inferpy.models.random_variable),

97

174 Index

	Getting Started:
	Guiding Principles
	Requirements
	Guide to Probabilistic Models
	Guide to Approximate Inference
	Guide to Bayesian Deep Learning
	Probabilistic Model Zoo
	inferpy package
	Contact and Support
	Python Module Index
	Index

