

Inferpy

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 inferpy	

 	
 	
 inferpy.contextmanager	

 	
 	
 inferpy.contextmanager.data_model	

 	
 	
 inferpy.contextmanager.evidence	

 	
 	
 inferpy.contextmanager.layer_registry	

 	
 	
 inferpy.contextmanager.randvar_registry	

 	
 	
 inferpy.data	

 	
 	
 inferpy.data.loaders	

 	
 	
 inferpy.inference	

 	
 	
 inferpy.inference.inference	

 	
 	
 inferpy.inference.mcmc	

 	
 	
 inferpy.inference.variational	

 	
 	
 inferpy.inference.variational.loss_functions	

 	
 	
 inferpy.inference.variational.loss_functions.elbo	

 	
 	
 inferpy.inference.variational.svi	

 	
 	
 inferpy.inference.variational.vi	

 	
 	
 inferpy.layers	

 	
 	
 inferpy.layers.sequential	

 	
 	
 inferpy.models	

 	
 	
 inferpy.models.parameter	

 	
 	
 inferpy.models.prob_model	

 	
 	
 inferpy.models.random_variable	

 	
 	
 inferpy.queries	

 	
 	
 inferpy.queries.query	

 	
 	
 inferpy.util	

 	
 	
 inferpy.util.common	

 	
 	
 inferpy.util.interceptor	

 	
 	
 inferpy.util.iterables	

 	
 	
 inferpy.util.name	

 	
 	
 inferpy.util.runtime	

 	
 	
 inferpy.util.session	

 	
 	
 inferpy.util.startup	

 	
 	
 inferpy.util.tf_graph	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	add_sequential() (in module inferpy.contextmanager.layer_registry)

 	
 	Autoregressive() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

B

 	
 	BatchReshape() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	Bernoulli() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	Beta() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	
 	Binomial() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	Blockwise() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	build_data_loader() (in module inferpy.data.loaders)

 	build_in_session() (inferpy.models.random_variable.RandomVariable method)

 	build_sample_dict() (in module inferpy.data.loaders)

C

 	
 	Categorical() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	Cauchy() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	Chi() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	Chi2() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	Chi2WithAbsDf() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	clear_session() (in module inferpy.util)

 	(in module inferpy.util.session)

 	compile() (inferpy.inference.inference.Inference method)

 	(inferpy.inference.MCMC method)

 	(inferpy.inference.SVI method)

 	(inferpy.inference.VI method)

 	(inferpy.inference.mcmc.MCMC method)

 	(inferpy.inference.variational.svi.SVI method)

 	(inferpy.inference.variational.vi.VI method)

 	
 	ConditionalDistribution() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	ConditionalTransformedDistribution() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	copy() (inferpy.models.random_variable.RandomVariable method)

 	create_input_data_tensor() (inferpy.inference.SVI method)

 	(inferpy.inference.variational.svi.SVI method)

 	CsvLoader (class in inferpy.data.loaders)

D

 	
 	DataLoader (class in inferpy.data.loaders)

 	datamodel() (in module inferpy.contextmanager.data_model)

 	(in module inferpy.models)

 	Deterministic() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	Dirichlet() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	
 	DirichletMultinomial() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	disallow_conditions() (in module inferpy.util.interceptor)

 	Distribution() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

E

 	
 	ELBO() (in module inferpy.inference.variational.loss_functions)

 	(in module inferpy.inference.variational.loss_functions.elbo)

 	Empirical() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	enable_interceptor() (in module inferpy.util.interceptor)

 	
 	expand_model() (inferpy.models.prob_model.ProbModel method)

 	Exponential() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	ExpRelaxedOneHotCategorical() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

F

 	
 	FiniteDiscrete() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	fit() (in module inferpy.contextmanager.data_model)

 	(inferpy.models.prob_model.ProbModel method)

 	
 	flatten_result() (in module inferpy.queries.query)

 	floatx() (in module inferpy.util)

 	(in module inferpy.util.common)

G

 	
 	Gamma() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	GammaGamma() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	GaussianProcess() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	GaussianProcessRegressionModel() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	generate() (in module inferpy.util.name)

 	Geometric() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	get_empty_graph() (in module inferpy.util.tf_graph)

 	get_graph() (in module inferpy.contextmanager.randvar_registry)

 	(in module inferpy.util.tf_graph)

 	get_interceptable_condition_variables() (inferpy.inference.inference.Inference method)

 	(inferpy.inference.VI method)

 	(inferpy.inference.variational.vi.VI method)

 	
 	get_losses() (in module inferpy.contextmanager.layer_registry)

 	get_plate_size() (in module inferpy.util.iterables)

 	get_sample_shape() (in module inferpy.contextmanager.data_model)

 	get_session() (in module inferpy.util)

 	(in module inferpy.util.session)

 	get_shape() (in module inferpy.util.iterables)

 	get_var_parameters() (in module inferpy.contextmanager.randvar_registry)

 	get_variable() (in module inferpy.contextmanager.randvar_registry)

 	get_variable_or_parameter() (in module inferpy.contextmanager.randvar_registry)

 	GLOBAL_HIDDEN (inferpy.models.random_variable.Kind attribute)

 	GLOBAL_OBSERVED (inferpy.models.random_variable.Kind attribute)

 	Gumbel() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

H

 	
 	HalfCauchy() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	HalfNormal() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	
 	HiddenMarkovModel() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	Horseshoe() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

I

 	
 	Independent() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	Inference (class in inferpy.inference.inference)

 	inferpy.contextmanager (module)

 	inferpy.contextmanager.data_model (module)

 	inferpy.contextmanager.evidence (module)

 	inferpy.contextmanager.layer_registry (module)

 	inferpy.contextmanager.randvar_registry (module)

 	inferpy.data (module)

 	inferpy.data.loaders (module)

 	inferpy.inference (module)

 	inferpy.inference.inference (module)

 	inferpy.inference.mcmc (module)

 	inferpy.inference.variational (module)

 	inferpy.inference.variational.loss_functions (module)

 	inferpy.inference.variational.loss_functions.elbo (module)

 	inferpy.inference.variational.svi (module)

 	inferpy.inference.variational.vi (module)

 	inferpy.layers (module)

 	inferpy.layers.sequential (module)

 	inferpy.models (module)

 	inferpy.models.parameter (module)

 	inferpy.models.prob_model (module)

 	
 	inferpy.models.random_variable (module)

 	inferpy.queries (module)

 	inferpy.queries.query (module)

 	inferpy.util (module)

 	inferpy.util.common (module)

 	inferpy.util.interceptor (module)

 	inferpy.util.iterables (module)

 	inferpy.util.name (module)

 	inferpy.util.runtime (module)

 	inferpy.util.session (module)

 	inferpy.util.startup (module)

 	inferpy.util.tf_graph (module)

 	init() (in module inferpy.contextmanager.layer_registry)

 	(in module inferpy.contextmanager.randvar_registry)

 	init_uninit_vars() (in module inferpy.util)

 	(in module inferpy.util.session)

 	InverseGamma() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	InverseGaussian() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	is_active() (in module inferpy.contextmanager.data_model)

 	is_building_graph() (in module inferpy.contextmanager.randvar_registry)

 	is_default() (in module inferpy.contextmanager.randvar_registry)

 	is_float() (in module inferpy.util.common)

J

 	
 	JointDistribution() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	JointDistributionCoroutine() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	
 	JointDistributionNamed() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	JointDistributionSequential() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

K

 	
 	Kind (class in inferpy.models.random_variable)

 	
 	Kumaraswamy() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

L

 	
 	Laplace() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	LinearGaussianStateSpaceModel() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	LKJ() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	LOCAL_HIDDEN (inferpy.models.random_variable.Kind attribute)

 	LOCAL_OBSERVED (inferpy.models.random_variable.Kind attribute)

 	
 	log_prob() (inferpy.queries.Query method)

 	(inferpy.queries.query.Query method)

 	Logistic() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	LogNormal() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	losses() (inferpy.inference.variational.vi.VI property)

 	(inferpy.inference.VI property)

M

 	
 	make_predictable_variables() (in module inferpy.util.interceptor)

 	map_batch_fn() (inferpy.data.loaders.DataLoader property)

 	MCMC (class in inferpy.inference)

 	(class in inferpy.inference.mcmc)

 	MixtureGaussian() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	Multinomial() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	MultivariateNormalDiag() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	MultivariateNormalDiagPlusLowRank() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	
 	MultivariateNormalDiagWithSoftplusScale() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	MultivariateNormalFullCovariance() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	MultivariateNormalLinearOperator() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	MultivariateNormalTriL() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	MultivariateStudentTLinearOperator() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

N

 	
 	NegativeBinomial() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	new_session() (in module inferpy.util)

 	(in module inferpy.util.session)

 	
 	Normal() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

O

 	
 	observe() (in module inferpy.contextmanager.evidence)

 	
 	OneHotCategorical() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

P

 	
 	Parameter (class in inferpy.models)

 	(class in inferpy.models.parameter)

 	parameters() (inferpy.queries.Query method)

 	(inferpy.queries.query.Query method)

 	Pareto() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	plot_graph() (inferpy.models.prob_model.ProbModel method)

 	Poisson() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	PoissonLogNormalQuadratureCompound() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	posterior() (inferpy.inference.inference.Inference method)

 	(inferpy.inference.MCMC method)

 	(inferpy.inference.VI method)

 	(inferpy.inference.mcmc.MCMC method)

 	(inferpy.inference.variational.vi.VI method)

 	(inferpy.models.prob_model.ProbModel method)

 	
 	posterior_predictive() (inferpy.inference.inference.Inference method)

 	(inferpy.inference.MCMC method)

 	(inferpy.inference.VI method)

 	(inferpy.inference.mcmc.MCMC method)

 	(inferpy.inference.variational.vi.VI method)

 	(inferpy.models.prob_model.ProbModel method)

 	prior() (inferpy.models.prob_model.ProbModel method)

 	ProbModel (class in inferpy.models.prob_model)

 	probmodel() (in module inferpy.models)

 	(in module inferpy.models.prob_model)

Q

 	
 	QuantizedDistribution() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	
 	Query (class in inferpy.queries)

 	(class in inferpy.queries.query)

R

 	
 	RandomVariable (class in inferpy.models.random_variable)

 	register_parameter() (in module inferpy.contextmanager.randvar_registry)

 	register_variable() (in module inferpy.contextmanager.randvar_registry)

 	RelaxedBernoulli() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	
 	RelaxedOneHotCategorical() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	restart_default() (in module inferpy.contextmanager.randvar_registry)

 	runner_scope() (in module inferpy.util.runtime)

S

 	
 	Sample() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	sample() (inferpy.queries.Query method)

 	(inferpy.queries.query.Query method)

 	SampleDictLoader (class in inferpy.data.loaders)

 	Sequential() (in module inferpy.layers)

 	(in module inferpy.layers.sequential)

 	set_floatx() (in module inferpy.util)

 	(in module inferpy.util.common)

 	set_session() (in module inferpy.util)

 	(in module inferpy.util.session)

 	set_tf_run() (in module inferpy.util)

 	(in module inferpy.util.runtime)

 	set_values() (in module inferpy.util.interceptor)

 	
 	set_values_condition() (in module inferpy.util.interceptor)

 	shuffle_buffer_size() (inferpy.data.loaders.DataLoader property)

 	SinhArcsinh() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	size() (inferpy.data.loaders.DataLoader property)

 	StudentT() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	StudentTProcess() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	sum_log_prob() (inferpy.queries.Query method)

 	(inferpy.queries.query.Query method)

 	SVI (class in inferpy.inference)

 	(class in inferpy.inference.variational.svi)

 	swap_session() (in module inferpy.util.session)

T

 	
 	tf_run_allowed() (in module inferpy.util)

 	(in module inferpy.util.runtime)

 	tf_run_ignored() (in module inferpy.util)

 	(in module inferpy.util.runtime)

 	to_dict() (inferpy.data.loaders.CsvLoader method)

 	(inferpy.data.loaders.DataLoader method)

 	(inferpy.data.loaders.SampleDictLoader method)

 	to_tfdataset() (inferpy.data.loaders.CsvLoader method)

 	(inferpy.data.loaders.DataLoader method)

 	(inferpy.data.loaders.SampleDictLoader method)

 	
 	TransformedDistribution() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	Triangular() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	TruncatedNormal() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	try_run() (in module inferpy.util.runtime)

 	type() (inferpy.models.random_variable.RandomVariable property)

U

 	
 	Uniform() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	update() (inferpy.inference.inference.Inference method)

 	(inferpy.inference.MCMC method)

 	(inferpy.inference.SVI method)

 	(inferpy.inference.VI method)

 	(inferpy.inference.mcmc.MCMC method)

 	(inferpy.inference.variational.svi.SVI method)

 	(inferpy.inference.variational.vi.VI method)

 	
 	update_graph() (in module inferpy.contextmanager.randvar_registry)

V

 	
 	variables() (inferpy.data.loaders.DataLoader property)

 	VariationalGaussianProcess() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	VectorDeterministic() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	VectorDiffeomixture() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	VectorExponentialDiag() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	
 	VectorLaplaceDiag() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	VectorSinhArcsinhDiag() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	VI (class in inferpy.inference)

 	(class in inferpy.inference.variational.vi)

 	VonMises() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

 	VonMisesFisher() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

W

 	
 	Wishart() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

Z

 	
 	Zipf() (in module inferpy.models)

 	(in module inferpy.models.random_variable)

inferpy.contextmanager package

Submodules

inferpy.contextmanager.data_model module

	
inferpy.contextmanager.data_model.datamodel(size=None)

	This context is used to declare a plateau model. Random Variables and Parameters will use a sample_shape
defined by the argument size, or by the data_model.fit. If size is not specified, the default size 1,
or the size specified by fit will be used.

	
inferpy.contextmanager.data_model.fit(size)

	

	
inferpy.contextmanager.data_model.get_sample_shape(name)

	This function must be used inside a datamodel context (it is not checked here)
If the parameters are not already expanded, then are now expanded.

	name (str)

	The name of the variable to get its sample shape

	returns

	the sample_shape (number of samples of the datamodel). It is an integer, or ().

	
inferpy.contextmanager.data_model.is_active()

	

inferpy.contextmanager.evidence module

	
inferpy.contextmanager.evidence.observe(variables, data)

	

inferpy.contextmanager.layer_registry module

	
inferpy.contextmanager.layer_registry.add_sequential(sequential)

	

	
inferpy.contextmanager.layer_registry.get_losses()

	

	
inferpy.contextmanager.layer_registry.init(graph=None)

	

inferpy.contextmanager.randvar_registry module

	
inferpy.contextmanager.randvar_registry.get_graph()

	

	
inferpy.contextmanager.randvar_registry.get_var_parameters()

	

	
inferpy.contextmanager.randvar_registry.get_variable(name)

	

	
inferpy.contextmanager.randvar_registry.get_variable_or_parameter(name)

	

	
inferpy.contextmanager.randvar_registry.init(graph=None)

	

	
inferpy.contextmanager.randvar_registry.is_building_graph()

	

	
inferpy.contextmanager.randvar_registry.is_default()

	

	
inferpy.contextmanager.randvar_registry.register_parameter(p)

	

	
inferpy.contextmanager.randvar_registry.register_variable(rv)

	

	
inferpy.contextmanager.randvar_registry.restart_default()

	

	
inferpy.contextmanager.randvar_registry.update_graph(rv_name=None)

	

Module contents

inferpy.data package

Submodules

inferpy.data.loaders module

	
class inferpy.data.loaders.CsvLoader(path, var_dict=None, has_header=None, force_eager=False)

	Bases: inferpy.data.loaders.DataLoader

This class implements a data loader for datasets in CSV format

	
to_dict()

	Obtains a dictionary with data as numpy objects

	
to_tfdataset(batch_size=None)

	Obtains a tensorflow dataset object

	
class inferpy.data.loaders.DataLoader

	Bases: object

This class defines the basic functionality of any DataLoader

	
property map_batch_fn

	Returns a function that transforms each tensor batch

	
property shuffle_buffer_size

	Size of the shuffle size where 1 means no shuffle

	
property size

	Total number of instances in the data

	
to_dict()

	Obtains a dictionary with data as numpy objects

	
to_tfdataset()

	Obtains a tensorflow dataset object

	
property variables

	List of variables over which is the dataset defined

	
class inferpy.data.loaders.SampleDictLoader(sample_dict)

	Bases: inferpy.data.loaders.DataLoader

This class implements a data loader for datasets in memory stored as dictionaries

	
to_dict()

	Obtains a dictionary with data as numpy objects

	
to_tfdataset(batch_size=None)

	Obtains a tensorflow dataset object

	
inferpy.data.loaders.build_data_loader(data)

	This functions builds a DataLoader either from a dictionary or another
DataLoader object

	
inferpy.data.loaders.build_sample_dict(data)

	This functions builds a dictionary either from other dictionary or from a
DataLoader object

inferpy.data.mnist module

Module contents

inferpy.inference.variational.loss_functions package

Submodules

inferpy.inference.variational.loss_functions.elbo module

	
inferpy.inference.variational.loss_functions.elbo.ELBO(pvars, qvars, batch_weight=1, **kwargs)

	Compute the loss tensor from the expanded variables of p and q models.
:param pvars: The dict with the expanded p random variables
:type pvars: dict<inferpy.RandomVariable>
:param qvars: The dict with the expanded q random variables
:type qvars: dict<inferpy.RandomVariable>
:param batch_weight: Weight to assign less importance to the energy, used when processing data in batches
:type batch_weight: float

	Returns (tf.Tensor):
	The generated loss tensor

Module contents

	
inferpy.inference.variational.loss_functions.ELBO(pvars, qvars, batch_weight=1, **kwargs)

	Compute the loss tensor from the expanded variables of p and q models.
:param pvars: The dict with the expanded p random variables
:type pvars: dict<inferpy.RandomVariable>
:param qvars: The dict with the expanded q random variables
:type qvars: dict<inferpy.RandomVariable>
:param batch_weight: Weight to assign less importance to the energy, used when processing data in batches
:type batch_weight: float

	Returns (tf.Tensor):
	The generated loss tensor

inferpy.inference.variational package

Subpackages

	inferpy.inference.variational.loss_functions package
	Submodules

	inferpy.inference.variational.loss_functions.elbo module

	Module contents

Submodules

inferpy.inference.variational.svi module

	
class inferpy.inference.variational.svi.SVI(*args, batch_size=100, **kwargs)

	Bases: inferpy.inference.variational.vi.VI

	
compile(pmodel, data_size, extra_loss_tensor=None)

	

	
create_input_data_tensor(data_loader)

	

	
update(data)

	

inferpy.inference.variational.vi module

	
class inferpy.inference.variational.vi.VI(qmodel, loss='ELBO', optimizer='AdamOptimizer', epochs=1000)

	Bases: inferpy.inference.inference.Inference

	
compile(pmodel, data_size, extra_loss_tensor=None)

	

	
get_interceptable_condition_variables()

	

	
property losses

	

	
posterior(target_names=None, data={})

	

	
posterior_predictive(target_names=None, data={})

	

	
update(data)

	

Module contents

inferpy.inference package

Subpackages

	inferpy.inference.variational package
	Subpackages
	inferpy.inference.variational.loss_functions package
	Submodules

	inferpy.inference.variational.loss_functions.elbo module

	Module contents

	Submodules

	inferpy.inference.variational.svi module

	inferpy.inference.variational.vi module

	Module contents

Submodules

inferpy.inference.inference module

	
class inferpy.inference.inference.Inference

	Bases: object

This class implements the functionality of any Inference class.

	
compile(pmodel, data_size, extra_loss_tensor=None)

	

	
get_interceptable_condition_variables()

	

	
posterior(target_names=None, data={})

	

	
posterior_predictive(target_names=None, data={})

	

	
update(sample_dict)

	

inferpy.inference.mcmc module

	
class inferpy.inference.mcmc.MCMC(step_size=0.01, num_leapfrog_steps=5, num_burnin_steps=1000, num_results=500)

	Bases: inferpy.inference.inference.Inference

	
compile(pmodel, data_size, extra_loss_tensor=None)

	

	
posterior(target_names=None, data={})

	

	
posterior_predictive(target_names=None, data={})

	

	
update(data)

	

Module contents

Any inference class must implement a run method, which receives a sample_dict object,
and returns a dict of posterior objects (random distributions, list of samples, etc.)

	
class inferpy.inference.MCMC(step_size=0.01, num_leapfrog_steps=5, num_burnin_steps=1000, num_results=500)

	Bases: inferpy.inference.inference.Inference

	
compile(pmodel, data_size, extra_loss_tensor=None)

	

	
posterior(target_names=None, data={})

	

	
posterior_predictive(target_names=None, data={})

	

	
update(data)

	

	
class inferpy.inference.SVI(*args, batch_size=100, **kwargs)

	Bases: inferpy.inference.variational.vi.VI

	
compile(pmodel, data_size, extra_loss_tensor=None)

	

	
create_input_data_tensor(data_loader)

	

	
update(data)

	

	
class inferpy.inference.VI(qmodel, loss='ELBO', optimizer='AdamOptimizer', epochs=1000)

	Bases: inferpy.inference.inference.Inference

	
compile(pmodel, data_size, extra_loss_tensor=None)

	

	
get_interceptable_condition_variables()

	

	
property losses

	

	
posterior(target_names=None, data={})

	

	
posterior_predictive(target_names=None, data={})

	

	
update(data)

	

inferpy.layers package

Submodules

inferpy.layers.sequential module

	
inferpy.layers.sequential.Sequential(*args, **kwargs)

	

Module contents

	
inferpy.layers.Sequential(*args, **kwargs)

	

inferpy.models package

Submodules

inferpy.models.parameter module

	
class inferpy.models.parameter.Parameter(initial_value, name=None)

	Bases: object

Random Variable parameter which can be optimized by an inference mechanism.

inferpy.models.prob_model module

	
class inferpy.models.prob_model.ProbModel(builder)

	Bases: object

Class that implements the probabilistic model functionality.
It is composed of a graph, capturing the variable relationships, an OrderedDict containing
the Random Variables/Parameters in order of creation, and the function which declare the
Random Variables/Parameters.

	
expand_model(size=1)

	Create the expanded model vars using size as plate size and return the OrderedDict

	
fit(data, inference_method)

	

	
plot_graph()

	

	
posterior(target_names=None, data={})

	

	
posterior_predictive(target_names=None, data={})

	

	
prior(target_names=None, data={}, size_datamodel=1)

	

	
inferpy.models.prob_model.probmodel(builder)

	Decorator to create probabilistic models. The function decorated
must be a function which declares the Random Variables in the model.
It is not required that the function returns such variables (they are
captured using ed.tape).

inferpy.models.random_variable module

	
inferpy.models.random_variable.Autoregressive(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Autoregressive.

See Autoregressive for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct an Autoregressive distribution.

	Parameters

	
	distribution_fn – Python callable which constructs a
tfd.Distribution-like instance from a Tensor (e.g.,
sample0). The function must respect the “autoregressive property”,
i.e., there exists a permutation of event such that each coordinate is a
diffeomorphic function of on preceding coordinates.

	sample0 – Initial input to distribution_fn; used to
build the distribution in __init__ which in turn specifies this
distribution’s properties, e.g., event_shape, batch_shape, dtype.
If unspecified, then distribution_fn should be default constructable.

	num_steps – Number of times distribution_fn is composed from samples,
e.g., num_steps=2 implies
distribution_fn(distribution_fn(sample0).sample(n)).sample().

	validate_args – Python bool. Whether to validate input with asserts.
If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.
Default value: “Autoregressive”.

	Raises

	
	ValueError – if num_steps and
num_elements(distribution_fn(sample0).event_shape) are both None.

	ValueError – if num_steps < 1.

	
inferpy.models.random_variable.BatchReshape(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for BatchReshape.

See BatchReshape for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct BatchReshape distribution.

	Parameters

	
	distribution – The base distribution instance to reshape. Typically an
instance of Distribution.

	batch_shape – Positive int-like vector-shaped Tensor representing
the new shape of the batch dimensions. Up to one dimension may contain
-1, meaning the remainder of the batch size.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – The name to give Ops created by the initializer.
Default value: “BatchReshape” + distribution.name.

	Raises

	
	ValueError – if batch_shape is not a vector.

	ValueError – if batch_shape has non-positive elements.

	ValueError – if batch_shape size is not the same as a
distribution.batch_shape size.

	
inferpy.models.random_variable.Bernoulli(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Bernoulli.

See Bernoulli for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Bernoulli distributions.

	Parameters

	
	logits – An N-D Tensor representing the log-odds of a 1 event. Each
entry in the Tensor parametrizes an independent Bernoulli distribution
where the probability of an event is sigmoid(logits). Only one of
logits or probs should be passed in.

	probs – An N-D Tensor representing the probability of a 1
event. Each entry in the Tensor parameterizes an independent
Bernoulli distribution. Only one of logits or probs should be passed
in.

	dtype – The type of the event samples. Default: int32.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – If p and logits are passed, or if neither are passed.

	
inferpy.models.random_variable.Beta(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Beta.

See Beta for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Beta distributions.

	Parameters

	
	concentration1 – Positive floating-point Tensor indicating mean
number of successes; aka “alpha”. Implies self.dtype and
self.batch_shape, i.e.,
concentration1.shape = [N1, N2, …, Nm] = self.batch_shape.

	concentration0 – Positive floating-point Tensor indicating mean
number of failures; aka “beta”. Otherwise has same semantics as
concentration1.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.Binomial(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Binomial.

See Binomial for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Binomial distributions.

	Parameters

	
	total_count – Non-negative floating point tensor with shape broadcastable
to [N1,…, Nm] with m >= 0 and the same dtype as probs or
logits. Defines this as a batch of N1 x … x Nm different Binomial
distributions. Its components should be equal to integer values.

	logits – Floating point tensor representing the log-odds of a
positive event with shape broadcastable to [N1,…, Nm] m >= 0, and
the same dtype as total_count. Each entry represents logits for the
probability of success for independent Binomial distributions. Only one
of logits or probs should be passed in.

	probs – Positive floating point tensor with shape broadcastable to
[N1,…, Nm] m >= 0, probs in [0, 1]. Each entry represents the
probability of success for independent Binomial distributions. Only one
of logits or probs should be passed in.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.Blockwise(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Blockwise.

See Blockwise for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct the Blockwise distribution.

	Parameters

	
	distributions – Python list of tfp.distributions.Distribution
instances. All distribution instances must have the same batch_shape
and all must have event_ndims==1, i.e., be vector-variate
distributions.

	dtype_override – samples of distributions will be cast to this dtype.
If unspecified, all distributions must have the same dtype.
Default value: None (i.e., do not cast).

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.Categorical(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Categorical.

See Categorical for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize Categorical distributions using class log-probabilities.

	Parameters

	
	logits – An N-D Tensor, N >= 1, representing the log probabilities
of a set of Categorical distributions. The first N - 1 dimensions
index into a batch of independent distributions and the last dimension
represents a vector of logits for each class. Only one of logits or
probs should be passed in.

	probs – An N-D Tensor, N >= 1, representing the probabilities
of a set of Categorical distributions. The first N - 1 dimensions
index into a batch of independent distributions and the last dimension
represents a vector of probabilities for each class. Only one of
logits or probs should be passed in.

	dtype – The type of the event samples (default: int32).

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.Cauchy(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Cauchy.

See Cauchy for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Cauchy distributions.

The parameters loc and scale must be shaped in a way that supports
broadcasting (e.g. loc + scale is a valid operation).

	Parameters

	
	loc – Floating point tensor; the modes of the distribution(s).

	scale – Floating point tensor; the locations of the distribution(s).
Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if loc and scale have different dtype.

	
inferpy.models.random_variable.Chi(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Chi.

See Chi for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Chi distributions with parameter df.

	Parameters

	
	df – Floating point tensor, the degrees of freedom of the
distribution(s). df must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value NaN to indicate the result
is undefined. When False, an exception is raised if one or more of the
statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘Chi’.

	
inferpy.models.random_variable.Chi2(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Chi2.

See Chi2 for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Chi2 distributions with parameter df.

	Parameters

	
	df – Floating point tensor, the degrees of freedom of the
distribution(s). df must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.Chi2WithAbsDf(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Chi2WithAbsDf.

See Chi2WithAbsDf for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2019-06-05.
Instructions for updating:
Chi2WithAbsDf is deprecated, use Chi2(df=tf.floor(tf.abs(df))) instead.

	
inferpy.models.random_variable.ConditionalDistribution(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for ConditionalDistribution.

See ConditionalDistribution for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Constructs the Distribution.

This is a private method for subclass use.

	Parameters

	
	dtype – The type of the event samples. None implies no type-enforcement.

	reparameterization_type – Instance of ReparameterizationType.
If tfd.FULLY_REPARAMETERIZED, this
Distribution can be reparameterized in terms of some standard
distribution with a function whose Jacobian is constant for the support
of the standard distribution. If tfd.NOT_REPARAMETERIZED,
then no such reparameterization is available.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	parameters – Python dict of parameters used to instantiate this
Distribution.

	graph_parents – Python list of graph prerequisites of this
Distribution.

	name – Python str name prefixed to Ops created by this class. Default:
subclass name.

	Raises

	ValueError – if any member of graph_parents is None or not a Tensor.

	
inferpy.models.random_variable.ConditionalTransformedDistribution(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for ConditionalTransformedDistribution.

See ConditionalTransformedDistribution for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a Transformed Distribution.

	Parameters

	
	distribution – The base distribution instance to transform. Typically an
instance of Distribution.

	bijector – The object responsible for calculating the transformation.
Typically an instance of Bijector.

	batch_shape – integer vector Tensor which overrides distribution
batch_shape; valid only if distribution.is_scalar_batch().

	event_shape – integer vector Tensor which overrides distribution
event_shape; valid only if distribution.is_scalar_event().

	kwargs_split_fn – Python callable which takes a kwargs dict and returns
a tuple of kwargs dict`s for each of the `distribution and bijector
parameters respectively.
Default value: _default_kwargs_split_fn (i.e.,

	`lambda kwargs: (kwargs.get(‘distribution_kwargs’, {}),
	kwargs.get(‘bijector_kwargs’, {}))`)

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	parameters – Locals dict captured by subclass constructor, to be used for
copy/slice re-instantiation operations.

	name – Python str name prefixed to Ops created by this class. Default:
bijector.name + distribution.name.

	
inferpy.models.random_variable.Deterministic(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Deterministic.

See Deterministic for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a scalar Deterministic distribution.

The atol and rtol parameters allow for some slack in pmf, cdf
computations, e.g. due to floating-point error.

```
pmf(x; loc)


= 1, if Abs(x - loc) <= atol + rtol * Abs(loc),
= 0, otherwise.




```


	Parameters

	
	loc – Numeric Tensor of shape [B1, …, Bb], with b >= 0.
The point (or batch of points) on which this distribution is supported.

	atol – Non-negative Tensor of same dtype as loc and broadcastable
shape. The absolute tolerance for comparing closeness to loc.
Default is 0.

	rtol – Non-negative Tensor of same dtype as loc and broadcastable
shape. The relative tolerance for comparing closeness to loc.
Default is 0.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.Dirichlet(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Dirichlet.

See Dirichlet for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Dirichlet distributions.

	Parameters

	
	concentration – Positive floating-point Tensor indicating mean number
of class occurrences; aka “alpha”. Implies self.dtype, and
self.batch_shape, self.event_shape, i.e., if
concentration.shape = [N1, N2, …, Nm, k] then
batch_shape = [N1, N2, …, Nm] and
event_shape = [k].

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.DirichletMultinomial(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for DirichletMultinomial.

See DirichletMultinomial for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of DirichletMultinomial distributions.

	Parameters

	
	total_count – Non-negative floating point tensor, whose dtype is the same
as concentration. The shape is broadcastable to [N1,…, Nm] with
m >= 0. Defines this as a batch of N1 x … x Nm different
Dirichlet multinomial distributions. Its components should be equal to
integer values.

	concentration – Positive floating point tensor, whose dtype is the
same as n with shape broadcastable to [N1,…, Nm, K] m >= 0.
Defines this as a batch of N1 x … x Nm different K class Dirichlet
multinomial distributions.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.Distribution(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Distribution.

See Distribution for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Constructs the Distribution.

This is a private method for subclass use.

	Parameters

	
	dtype – The type of the event samples. None implies no type-enforcement.

	reparameterization_type – Instance of ReparameterizationType.
If tfd.FULLY_REPARAMETERIZED, this
Distribution can be reparameterized in terms of some standard
distribution with a function whose Jacobian is constant for the support
of the standard distribution. If tfd.NOT_REPARAMETERIZED,
then no such reparameterization is available.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	parameters – Python dict of parameters used to instantiate this
Distribution.

	graph_parents – Python list of graph prerequisites of this
Distribution.

	name – Python str name prefixed to Ops created by this class. Default:
subclass name.

	Raises

	ValueError – if any member of graph_parents is None or not a Tensor.

	
inferpy.models.random_variable.Empirical(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Empirical.

See Empirical for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize Empirical distributions.

	Parameters

	
	samples – Numeric Tensor of shape [B1, …, Bk, S, E1, …, En]`,
k, n >= 0. Samples or batches of samples on which the distribution
is based. The first k dimensions index into a batch of independent
distributions. Length of S dimension determines number of samples
in each multiset. The last n dimension represents samples for each
distribution. n is specified by argument event_ndims.

	event_ndims – Python int32, default 0. number of dimensions for each
event. When 0 this distribution has scalar samples. When 1 this
distribution has vector-like samples.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value NaN to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if the rank of samples < event_ndims + 1.

	
inferpy.models.random_variable.ExpRelaxedOneHotCategorical(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for ExpRelaxedOneHotCategorical.

See ExpRelaxedOneHotCategorical for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize ExpRelaxedOneHotCategorical using class log-probabilities.

	Parameters

	
	temperature – An 0-D Tensor, representing the temperature
of a set of ExpRelaxedCategorical distributions. The temperature should
be positive.

	logits – An N-D Tensor, N >= 1, representing the log probabilities
of a set of ExpRelaxedCategorical distributions. The first
N - 1 dimensions index into a batch of independent distributions and
the last dimension represents a vector of logits for each class. Only
one of logits or probs should be passed in.

	probs – An N-D Tensor, N >= 1, representing the probabilities
of a set of ExpRelaxedCategorical distributions. The first
N - 1 dimensions index into a batch of independent distributions and
the last dimension represents a vector of probabilities for each
class. Only one of logits or probs should be passed in.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.Exponential(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Exponential.

See Exponential for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Exponential distribution with parameter rate.

	Parameters

	
	rate – Floating point tensor, equivalent to 1 / mean. Must contain only
positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.FiniteDiscrete(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for FiniteDiscrete.

See FiniteDiscrete for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a finite discrete contribution.

	Parameters

	
	outcomes – A 1-D floating or integer Tensor, representing a list of
possible outcomes in strictly ascending order.

	logits – A floating N-D Tensor, N >= 1, representing the log
probabilities of a set of FiniteDiscrete distributions. The first N -
1 dimensions index into a batch of independent distributions and the
last dimension represents a vector of logits for each discrete value.
Only one of logits or probs should be passed in.

	probs – A floating N-D Tensor, N >= 1, representing the probabilities
of a set of FiniteDiscrete distributions. The first N - 1 dimensions
index into a batch of independent distributions and the last dimension
represents a vector of probabilities for each discrete value. Only one
of logits or probs should be passed in.

	rtol – Tensor with same dtype as outcomes. The relative tolerance for
floating number comparison. Only effective when outcomes is a floating
Tensor. Default is 10 * eps.

	atol – Tensor with same dtype as outcomes. The absolute tolerance for
floating number comparison. Only effective when outcomes is a floating
Tensor. Default is 10 * eps.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may render incorrect outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value ‘NaN’ to indicate the
result is undefined. When False, an exception is raised if one or more
of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.Gamma(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Gamma.

See Gamma for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Gamma with concentration and rate parameters.

The parameters concentration and rate must be shaped in a way that
supports broadcasting (e.g. concentration + rate is a valid operation).

	Parameters

	
	concentration – Floating point tensor, the concentration params of the
distribution(s). Must contain only positive values.

	rate – Floating point tensor, the inverse scale params of the
distribution(s). Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if concentration and rate are different dtypes.

	
inferpy.models.random_variable.GammaGamma(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for GammaGamma.

See GammaGamma for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initializes a batch of Gamma-Gamma distributions.

The parameters concentration and rate must be shaped in a way that
supports broadcasting (e.g.
concentration + mixing_concentration + mixing_rate is a valid operation).

	Parameters

	
	concentration – Floating point tensor, the concentration params of the
distribution(s). Must contain only positive values.

	mixing_concentration – Floating point tensor, the concentration params of
the mixing Gamma distribution(s). Must contain only positive values.

	mixing_rate – Floating point tensor, the rate params of the mixing Gamma
distribution(s). Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or more
of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if concentration and rate are different dtypes.

	
inferpy.models.random_variable.GaussianProcess(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for GaussianProcess.

See GaussianProcess for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Instantiate a GaussianProcess Distribution.

	Parameters

	
	kernel – PositiveSemidefiniteKernel-like instance representing the
GP’s covariance function.

	index_points – float Tensor representing finite (batch of) vector(s) of
points in the index set over which the GP is defined. Shape has the form
[b1, …, bB, e, f1, …, fF] where F is the number of feature
dimensions and must equal kernel.feature_ndims and e is the number
(size) of index points in each batch. Ultimately this distribution
corresponds to a e-dimensional multivariate normal. The batch shape
must be broadcastable with kernel.batch_shape and any batch dims
yielded by mean_fn.

	mean_fn – Python callable that acts on index_points to produce a (batch
of) vector(s) of mean values at index_points. Takes a Tensor of
shape [b1, …, bB, f1, …, fF] and returns a Tensor whose shape is
broadcastable with [b1, …, bB]. Default value: None implies
constant zero function.

	observation_noise_variance – float Tensor representing the variance
of the noise in the Normal likelihood distribution of the model. May be
batched, in which case the batch shape must be broadcastable with the
shapes of all other batched parameters (kernel.batch_shape,
index_points, etc.).
Default value: 0.

	jitter – float scalar Tensor added to the diagonal of the covariance
matrix to ensure positive definiteness of the covariance matrix.
Default value: 1e-6.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.
Default value: False.

	name – Python str name prefixed to Ops created by this class.
Default value: “GaussianProcess”.

	Raises

	ValueError – if mean_fn is not None and is not callable.

	
inferpy.models.random_variable.GaussianProcessRegressionModel(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for GaussianProcessRegressionModel.

See GaussianProcessRegressionModel for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a GaussianProcessRegressionModel instance.

	Parameters

	
	kernel – PositiveSemidefiniteKernel-like instance representing the
GP’s covariance function.

	index_points – float Tensor representing finite collection, or batch of
collections, of points in the index set over which the GP is defined.
Shape has the form [b1, …, bB, e, f1, …, fF] where F is the
number of feature dimensions and must equal kernel.feature_ndims and
e is the number (size) of index points in each batch. Ultimately this
distribution corresponds to an e-dimensional multivariate normal. The
batch shape must be broadcastable with kernel.batch_shape and any
batch dims yielded by mean_fn.

	observation_index_points – float Tensor representing finite collection,
or batch of collections, of points in the index set for which some data
has been observed. Shape has the form [b1, …, bB, e, f1, …, fF]
where F is the number of feature dimensions and must equal
kernel.feature_ndims, and e is the number (size) of index points in
each batch. [b1, …, bB, e] must be broadcastable with the shape of
observations, and [b1, …, bB] must be broadcastable with the
shapes of all other batched parameters (kernel.batch_shape,
index_points, etc). The default value is None, which corresponds to
the empty set of observations, and simply results in the prior
predictive model (a GP with noise of variance
predictive_noise_variance).

	observations – float Tensor representing collection, or batch of
collections, of observations corresponding to
observation_index_points. Shape has the form [b1, …, bB, e], which
must be brodcastable with the batch and example shapes of
observation_index_points. The batch shape [b1, …, bB] must be
broadcastable with the shapes of all other batched parameters
(kernel.batch_shape, index_points, etc.). The default value is
None, which corresponds to the empty set of observations, and simply
results in the prior predictive model (a GP with noise of variance
predictive_noise_variance).

	observation_noise_variance – float Tensor representing the variance
of the noise in the Normal likelihood distribution of the model. May be
batched, in which case the batch shape must be broadcastable with the
shapes of all other batched parameters (kernel.batch_shape,
index_points, etc.).
Default value: 0.

	predictive_noise_variance – float Tensor representing the variance in
the posterior predictive model. If None, we simply re-use
observation_noise_variance for the posterior predictive noise. If set
explicitly, however, we use this value. This allows us, for example, to
omit predictive noise variance (by setting this to zero) to obtain
noiseless posterior predictions of function values, conditioned on noisy
observations.

	mean_fn – Python callable that acts on index_points to produce a
collection, or batch of collections, of mean values at index_points.
Takes a Tensor of shape [b1, …, bB, f1, …, fF] and returns a
Tensor whose shape is broadcastable with [b1, …, bB].
Default value: None implies the constant zero function.

	jitter – float scalar Tensor added to the diagonal of the covariance
matrix to ensure positive definiteness of the covariance matrix.
Default value: 1e-6.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value NaN to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.
Default value: False.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘GaussianProcessRegressionModel’.

	Raises

	ValueError – if either
- only one of observations and observation_index_points is given, or
- mean_fn is not None and not callable.

	
inferpy.models.random_variable.Geometric(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Geometric.

See Geometric for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Geometric distributions.

	Parameters

	
	logits – Floating-point Tensor with shape [B1, …, Bb] where b >= 0
indicates the number of batch dimensions. Each entry represents logits
for the probability of success for independent Geometric distributions
and must be in the range (-inf, inf]. Only one of logits or probs
should be specified.

	probs – Positive floating-point Tensor with shape [B1, …, Bb]
where b >= 0 indicates the number of batch dimensions. Each entry
represents the probability of success for independent Geometric
distributions and must be in the range (0, 1]. Only one of logits
or probs should be specified.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.Gumbel(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Gumbel.

See Gumbel for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Gumbel distributions with location and scale loc and scale.

The parameters loc and scale must be shaped in a way that supports
broadcasting (e.g. loc + scale is a valid operation).

	Parameters

	
	loc – Floating point tensor, the means of the distribution(s).

	scale – Floating point tensor, the scales of the distribution(s).
scale must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘Gumbel’.

	Raises

	TypeError – if loc and scale are different dtypes.

	
inferpy.models.random_variable.HalfCauchy(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for HalfCauchy.

See HalfCauchy for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a half-Cauchy distribution with loc and scale.

	Parameters

	
	loc – Floating-point Tensor; the location(s) of the distribution(s).

	scale – Floating-point Tensor; the scale(s) of the distribution(s).
Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs. Default value: False (i.e. do not validate args).

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘HalfCauchy’.

	Raises

	TypeError – if loc and scale have different dtype.

	
inferpy.models.random_variable.HalfNormal(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for HalfNormal.

See HalfNormal for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct HalfNormals with scale scale.

	Parameters

	
	scale – Floating point tensor; the scales of the distribution(s).
Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.HiddenMarkovModel(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for HiddenMarkovModel.

See HiddenMarkovModel for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize hidden Markov model.

	Parameters

	
	initial_distribution – A Categorical-like instance.
Determines probability of first hidden state in Markov chain.
The number of categories must match the number of categories of
transition_distribution as well as both the rightmost batch
dimension of transition_distribution and the rightmost batch
dimension of observation_distribution.

	transition_distribution – A Categorical-like instance.
The rightmost batch dimension indexes the probability distribution
of each hidden state conditioned on the previous hidden state.

	observation_distribution – A tfp.distributions.Distribution-like
instance. The rightmost batch dimension indexes the distribution
of each observation conditioned on the corresponding hidden state.

	num_steps – The number of steps taken in Markov chain. A python int.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.
Default value: “HiddenMarkovModel”.

	Raises

	
	ValueError – if num_steps is not at least 1.

	ValueError – if initial_distribution does not have scalar event_shape.

	ValueError – if transition_distribution does not have scalar
event_shape.

	ValueError – if transition_distribution and observation_distribution
are fully defined but don’t have matching rightmost dimension.

	
inferpy.models.random_variable.Horseshoe(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Horseshoe.

See Horseshoe for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a Horseshoe distribution with scale.

	Parameters

	
	scale – Floating point tensor; the scales of the distribution(s).
Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs. Default value: False (i.e., do not validate args).

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or more
of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘Horseshoe’.

	
inferpy.models.random_variable.Independent(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Independent.

See Independent for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a Independent distribution.

	Parameters

	
	distribution – The base distribution instance to transform. Typically an
instance of Distribution.

	reinterpreted_batch_ndims – Scalar, integer number of rightmost batch dims
which will be regarded as event dims. When None all but the first
batch axis (batch axis 0) will be transferred to event dimensions
(analogous to tf.layers.flatten).

	validate_args – Python bool. Whether to validate input with asserts.
If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.

	name – The name for ops managed by the distribution.
Default value: Independent + distribution.name.

	Raises

	ValueError – if reinterpreted_batch_ndims exceeds
distribution.batch_ndims

	
inferpy.models.random_variable.InverseGamma(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for InverseGamma.

See InverseGamma for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct InverseGamma with concentration and scale parameters. (deprecated arguments)

Warning: SOME ARGUMENTS ARE DEPRECATED: (rate). They will be removed after 2019-05-08.
Instructions for updating:
The rate parameter is deprecated. Use scale instead.The rate parameter was always interpreted as a scale parameter, but erroneously misnamed.

The parameters concentration and scale must be shaped in a way that
supports broadcasting (e.g. concentration + scale is a valid operation).

	Parameters

	
	concentration – Floating point tensor, the concentration params of the
distribution(s). Must contain only positive values.

	scale – Floating point tensor, the scale params of the distribution(s).
Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	rate – Deprecated (mis-named) alias for scale.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if concentration and scale are different dtypes.

	
inferpy.models.random_variable.InverseGaussian(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for InverseGaussian.

See InverseGaussian for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Constructs inverse Gaussian distribution with loc and concentration.

	Parameters

	
	loc – Floating-point Tensor, the loc params. Must contain only positive
values.

	concentration – Floating-point Tensor, the concentration params.
Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False (i.e. do not validate args).

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘InverseGaussian’.

	
inferpy.models.random_variable.JointDistribution(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for JointDistribution.

See JointDistribution for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Constructs the Distribution.

This is a private method for subclass use.

	Parameters

	
	dtype – The type of the event samples. None implies no type-enforcement.

	reparameterization_type – Instance of ReparameterizationType.
If tfd.FULLY_REPARAMETERIZED, this
Distribution can be reparameterized in terms of some standard
distribution with a function whose Jacobian is constant for the support
of the standard distribution. If tfd.NOT_REPARAMETERIZED,
then no such reparameterization is available.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	parameters – Python dict of parameters used to instantiate this
Distribution.

	graph_parents – Python list of graph prerequisites of this
Distribution.

	name – Python str name prefixed to Ops created by this class. Default:
subclass name.

	Raises

	ValueError – if any member of graph_parents is None or not a Tensor.

	
inferpy.models.random_variable.JointDistributionCoroutine(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for JointDistributionCoroutine.

See JointDistributionCoroutine for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct the JointDistributionCoroutine distribution.

	Parameters

	
	model – A generator that yields a sequence of tfd.Distribution-like
instances.

	sample_dtype – Samples from this distribution will be structured like
tf.nest.pack_sequence_as(sample_dtype, list_). sample_dtype is only
used for tf.nest.pack_sequence_as structuring of outputs, never
casting (which is the responsibility of the component distributions).
Default value: None (i.e., tuple).

	validate_args – Python bool. Whether to validate input with asserts.
If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.
Default value: False.

	name – The name for ops managed by the distribution.
Default value: None (i.e., “JointDistributionCoroutine”).

	
inferpy.models.random_variable.JointDistributionNamed(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for JointDistributionNamed.

See JointDistributionNamed for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct the JointDistributionNamed distribution.

	Parameters

	
	model – Python dict or namedtuple of distribution-making functions each
with required args corresponding only to other keys.

	validate_args – Python bool. Whether to validate input with asserts.
If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.
Default value: False.

	name – The name for ops managed by the distribution.
Default value: None (i.e., “JointDistributionNamed”).

	
inferpy.models.random_variable.JointDistributionSequential(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for JointDistributionSequential.

See JointDistributionSequential for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct the JointDistributionSequential distribution.

	Parameters

	
	model – Python list of either tfd.Distribution instances and/or
lambda functions which take the k previous distributions and returns a
new tfd.Distribution instance.

	validate_args – Python bool. Whether to validate input with asserts.
If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.
Default value: False.

	name – The name for ops managed by the distribution.
Default value: None (i.e., “JointDistributionSequential”).

	
class inferpy.models.random_variable.Kind

	Bases: enum.IntEnum

An enumeration.

	
GLOBAL_HIDDEN = 0

	

	
GLOBAL_OBSERVED = 1

	

	
LOCAL_HIDDEN = 2

	

	
LOCAL_OBSERVED = 3

	

	
inferpy.models.random_variable.Kumaraswamy(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Kumaraswamy.

See Kumaraswamy for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Kumaraswamy distributions.

	Parameters

	
	concentration1 – Positive floating-point Tensor indicating mean
number of successes; aka “alpha”. Implies self.dtype and
self.batch_shape, i.e.,
concentration1.shape = [N1, N2, …, Nm] = self.batch_shape.

	concentration0 – Positive floating-point Tensor indicating mean
number of failures; aka “beta”. Otherwise has same semantics as
concentration1.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.LKJ(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for LKJ.

See LKJ for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct LKJ distributions.

	Parameters

	
	dimension – Python int. The dimension of the correlation matrices
to sample.

	concentration – float or double Tensor. The positive concentration
parameter of the LKJ distributions. The pdf of a sample matrix X is
proportional to det(X) ** (concentration - 1).

	input_output_cholesky – Python bool. If True, functions whose input or
output have the semantics of samples assume inputs are in Cholesky form
and return outputs in Cholesky form. In particular, if this flag is
True, input to log_prob is presumed of Cholesky form and output from
sample is of Cholesky form. Setting this argument to True is purely
a computational optimization and does not change the underlying
distribution. Additionally, validation checks which are only defined on
the multiplied-out form are omitted, even if validate_args is True.
Default value: False (i.e., input/output does not have Cholesky
semantics).

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value NaN to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – If dimension is negative.

	
inferpy.models.random_variable.Laplace(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Laplace.

See Laplace for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Laplace distribution with parameters loc and scale.

The parameters loc and scale must be shaped in a way that supports
broadcasting (e.g., loc / scale is a valid operation).

	Parameters

	
	loc – Floating point tensor which characterizes the location (center)
of the distribution.

	scale – Positive floating point tensor which characterizes the spread of
the distribution.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if loc and scale are of different dtype.

	
inferpy.models.random_variable.LinearGaussianStateSpaceModel(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for LinearGaussianStateSpaceModel.

See LinearGaussianStateSpaceModel for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a `LinearGaussianStateSpaceModel.

	Parameters

	
	num_timesteps – Integer Tensor total number of timesteps.

	transition_matrix – A transition operator, represented by a Tensor or
LinearOperator of shape [latent_size, latent_size], or by a
callable taking as argument a scalar integer Tensor t and
returning a Tensor or LinearOperator representing the transition
operator from latent state at time t to time t + 1.

	transition_noise – An instance of
tfd.MultivariateNormalLinearOperator with event shape
[latent_size], representing the mean and covariance of the
transition noise model, or a callable taking as argument a
scalar integer Tensor t and returning such a distribution
representing the noise in the transition from time t to time t + 1.

	observation_matrix – An observation operator, represented by a Tensor
or LinearOperator of shape [observation_size, latent_size],
or by a callable taking as argument a scalar integer Tensor
t and returning a timestep-specific Tensor or
LinearOperator.

	observation_noise – An instance of
tfd.MultivariateNormalLinearOperator with event shape
[observation_size], representing the mean and covariance of
the observation noise model, or a callable taking as argument
a scalar integer Tensor t and returning a timestep-specific
noise model.

	initial_state_prior – An instance of MultivariateNormalLinearOperator
representing the prior distribution on latent states; must
have event shape [latent_size].

	initial_step – optional int specifying the time of the first
modeled timestep. This is added as an offset when passing
timesteps t to (optional) callables specifying
timestep-specific transition and observation models.

	validate_args – Python bool, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are
invalid, correct behavior is not guaranteed.

	allow_nan_stats – Python bool, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc…) is undefined for any
batch member If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

	name – The name to give Ops created by the initializer.

	
inferpy.models.random_variable.LogNormal(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for LogNormal.

See LogNormal for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a log-normal distribution.

The LogNormal distribution models positive-valued random variables
whose logarithm is normally distributed with mean loc and
standard deviation scale. It is constructed as the exponential
transformation of a Normal distribution.

	Parameters

	
	loc – Floating-point Tensor; the means of the underlying
Normal distribution(s).

	scale – Floating-point Tensor; the stddevs of the underlying
Normal distribution(s).

	validate_args – Python bool, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are
invalid, correct behavior is not guaranteed.

	allow_nan_stats – Python bool, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc…) is undefined for any
batch member If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

	name – The name to give Ops created by the initializer.

	
inferpy.models.random_variable.Logistic(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Logistic.

See Logistic for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Logistic distributions with mean and scale loc and scale.

The parameters loc and scale must be shaped in a way that supports
broadcasting (e.g. loc + scale is a valid operation).

	Parameters

	
	loc – Floating point tensor, the means of the distribution(s).

	scale – Floating point tensor, the scales of the distribution(s). Must
contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – The name to give Ops created by the initializer.

	Raises

	TypeError – if loc and scale are different dtypes.

	
inferpy.models.random_variable.MixtureGaussian(locs, scales, logits=None, probs=None, *args, **kwargs)

	

	
inferpy.models.random_variable.Multinomial(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Multinomial.

See Multinomial for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Multinomial distributions.

	Parameters

	
	total_count – Non-negative floating point tensor with shape broadcastable
to [N1,…, Nm] with m >= 0. Defines this as a batch of
N1 x … x Nm different Multinomial distributions. Its components
should be equal to integer values.

	logits – Floating point tensor representing unnormalized log-probabilities
of a positive event with shape broadcastable to
[N1,…, Nm, K] m >= 0, and the same dtype as total_count. Defines
this as a batch of N1 x … x Nm different K class Multinomial
distributions. Only one of logits or probs should be passed in.

	probs – Positive floating point tensor with shape broadcastable to
[N1,…, Nm, K] m >= 0 and same dtype as total_count. Defines
this as a batch of N1 x … x Nm different K class Multinomial
distributions. probs’s components in the last portion of its shape
should sum to 1. Only one of logits or probs should be passed in.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.MultivariateNormalDiag(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalDiag.

See MultivariateNormalDiag for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc (if provided) must broadcast with this.

Recall that covariance = scale @ scale.T. A (non-batch) scale matrix is:

`none
scale = diag(scale_diag + scale_identity_multiplier * ones(k))
`

where:

	scale_diag.shape = [k], and,

	scale_identity_multiplier.shape = [].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then
scale is the Identity matrix.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	scale_diag – Non-zero, floating-point Tensor representing a diagonal
matrix added to scale. May have shape [B1, …, Bb, k], b >= 0,
and characterizes b-batches of k x k diagonal matrices added to
scale. When both scale_identity_multiplier and scale_diag are
None then scale is the Identity.

	scale_identity_multiplier – Non-zero, floating-point Tensor representing
a scaled-identity-matrix added to scale. May have shape
[B1, …, Bb], b >= 0, and characterizes b-batches of scaled
k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is
the Identity.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if at most scale_identity_multiplier is specified.

	
inferpy.models.random_variable.MultivariateNormalDiagPlusLowRank(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalDiagPlusLowRank.

See MultivariateNormalDiagPlusLowRank for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc (if provided) must broadcast with this.

Recall that covariance = scale @ scale.T. A (non-batch) scale matrix is:

```none
scale = diag(scale_diag + scale_identity_multiplier ones(k)) +


scale_perturb_factor @ diag(scale_perturb_diag) @ scale_perturb_factor.T




```

where:

	scale_diag.shape = [k],

	scale_identity_multiplier.shape = [],

	scale_perturb_factor.shape = [k, r], typically k >> r, and,

	scale_perturb_diag.shape = [r].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then
scale is the Identity matrix.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	scale_diag – Non-zero, floating-point Tensor representing a diagonal
matrix added to scale. May have shape [B1, …, Bb, k], b >= 0,
and characterizes b-batches of k x k diagonal matrices added to
scale. When both scale_identity_multiplier and scale_diag are
None then scale is the Identity.

	scale_identity_multiplier – Non-zero, floating-point Tensor representing
a scaled-identity-matrix added to scale. May have shape
[B1, …, Bb], b >= 0, and characterizes b-batches of scaled
k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is
the Identity.

	scale_perturb_factor – Floating-point Tensor representing a rank-r
perturbation added to scale. May have shape [B1, …, Bb, k, r],
b >= 0, and characterizes b-batches of rank-r updates to scale.
When None, no rank-r update is added to scale.

	scale_perturb_diag – Floating-point Tensor representing a diagonal matrix
inside the rank-r perturbation added to scale. May have shape
[B1, …, Bb, r], b >= 0, and characterizes b-batches of r x r
diagonal matrices inside the perturbation added to scale. When
None, an identity matrix is used inside the perturbation. Can only be
specified if scale_perturb_factor is also specified.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if at most scale_identity_multiplier is specified.

	
inferpy.models.random_variable.MultivariateNormalDiagWithSoftplusScale(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalDiagWithSoftplusScale.

See MultivariateNormalDiagWithSoftplusScale for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2019-06-05.
Instructions for updating:
MultivariateNormalDiagWithSoftplusScale is deprecated, use MultivariateNormalDiag(loc=loc, scale_diag=tf.nn.softplus(scale_diag)) instead.

	
inferpy.models.random_variable.MultivariateNormalFullCovariance(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalFullCovariance.

See MultivariateNormalFullCovariance for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and
covariance_matrix arguments.

The event_shape is given by last dimension of the matrix implied by
covariance_matrix. The last dimension of loc (if provided) must
broadcast with this.

A non-batch covariance_matrix matrix is a k x k symmetric positive
definite matrix. In other words it is (real) symmetric with all eigenvalues
strictly positive.

Additional leading dimensions (if any) will index batches.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	covariance_matrix – Floating-point, symmetric positive definite Tensor of
same dtype as loc. The strict upper triangle of covariance_matrix
is ignored, so if covariance_matrix is not symmetric no error will be
raised (unless validate_args is True). covariance_matrix has shape
[B1, …, Bb, k, k] where b >= 0 and k is the event size.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if neither loc nor covariance_matrix are specified.

	
inferpy.models.random_variable.MultivariateNormalLinearOperator(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalLinearOperator.

See MultivariateNormalLinearOperator for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc (if provided) must broadcast with this.

Recall that covariance = scale @ scale.T.

Additional leading dimensions (if any) will index batches.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	scale – Instance of LinearOperator with same dtype as loc and shape
[B1, …, Bb, k, k].

	validate_args – Python bool, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are
invalid, correct behavior is not guaranteed.

	allow_nan_stats – Python bool, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc…) is undefined for any
batch member If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

	name – The name to give Ops created by the initializer.

	Raises

	
	ValueError – if scale is unspecified.

	TypeError – if not scale.dtype.is_floating

	
inferpy.models.random_variable.MultivariateNormalTriL(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalTriL.

See MultivariateNormalTriL for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc (if provided) must broadcast with this.

Recall that covariance = scale @ scale.T. A (non-batch) scale matrix is:

`none
scale = scale_tril
`

where scale_tril is lower-triangular k x k matrix with non-zero
diagonal, i.e., tf.diag_part(scale_tril) != 0.

Additional leading dimensions (if any) will index batches.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	scale_tril – Floating-point, lower-triangular Tensor with non-zero
diagonal elements. scale_tril has shape [B1, …, Bb, k, k] where
b >= 0 and k is the event size.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if neither loc nor scale_tril are specified.

	
inferpy.models.random_variable.MultivariateStudentTLinearOperator(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateStudentTLinearOperator.

See MultivariateStudentTLinearOperator for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Multivariate Student’s t-distribution on R^k.

The batch_shape is the broadcast shape between df, loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc must broadcast with this.

Additional leading dimensions (if any) will index batches.

	Parameters

	
	df – A positive floating-point Tensor. Has shape [B1, …, Bb] where b
>= 0.

	loc – Floating-point Tensor. Has shape [B1, …, Bb, k] where k is
the event size.

	scale – Instance of LinearOperator with a floating dtype and shape
[B1, …, Bb, k, k].

	validate_args – Python bool, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.

	allow_nan_stats – Python bool, default True. If False, raise an
exception if a statistic (e.g. mean/variance/etc…) is undefined for
any batch member If True, batch members with valid parameters leading
to undefined statistics will return NaN for this statistic.

	name – The name to give Ops created by the initializer.

	Raises

	
	TypeError – if not scale.dtype.is_floating.

	ValueError – if not scale.is_positive_definite.

	
inferpy.models.random_variable.NegativeBinomial(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for NegativeBinomial.

See NegativeBinomial for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct NegativeBinomial distributions.

	Parameters

	
	total_count – Non-negative floating-point Tensor with shape
broadcastable to [B1,…, Bb] with b >= 0 and the same dtype as
probs or logits. Defines this as a batch of N1 x … x Nm
different Negative Binomial distributions. In practice, this represents
the number of negative Bernoulli trials to stop at (the total_count
of failures), but this is still a valid distribution when
total_count is a non-integer.

	logits – Floating-point Tensor with shape broadcastable to
[B1, …, Bb] where b >= 0 indicates the number of batch dimensions.
Each entry represents logits for the probability of success for
independent Negative Binomial distributions and must be in the open
interval (-inf, inf). Only one of logits or probs should be
specified.

	probs – Positive floating-point Tensor with shape broadcastable to
[B1, …, Bb] where b >= 0 indicates the number of batch dimensions.
Each entry represents the probability of success for independent
Negative Binomial distributions and must be in the open interval
(0, 1). Only one of logits or probs should be specified.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.Normal(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Normal.

See Normal for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Normal distributions with mean and stddev loc and scale.

The parameters loc and scale must be shaped in a way that supports
broadcasting (e.g. loc + scale is a valid operation).

	Parameters

	
	loc – Floating point tensor; the means of the distribution(s).

	scale – Floating point tensor; the stddevs of the distribution(s).
Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if loc and scale have different dtype.

	
inferpy.models.random_variable.OneHotCategorical(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for OneHotCategorical.

See OneHotCategorical for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize OneHotCategorical distributions using class log-probabilities.

	Parameters

	
	logits – An N-D Tensor, N >= 1, representing the log probabilities of a
set of Categorical distributions. The first N - 1 dimensions index
into a batch of independent distributions and the last dimension
represents a vector of logits for each class. Only one of logits or
probs should be passed in.

	probs – An N-D Tensor, N >= 1, representing the probabilities of a set
of Categorical distributions. The first N - 1 dimensions index into a
batch of independent distributions and the last dimension represents a
vector of probabilities for each class. Only one of logits or probs
should be passed in.

	dtype – The type of the event samples (default: int32).

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.Pareto(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Pareto.

See Pareto for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Pareto distribution with concentration and scale.

	Parameters

	
	concentration – Floating point tensor. Must contain only positive values.

	scale – Floating point tensor, equivalent to mode. scale also
restricts the domain of this distribution to be in [scale, inf).
Must contain only positive values. Default value: 1.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs. Default value: False (i.e. do not validate args).

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘Pareto’.

	
inferpy.models.random_variable.Poisson(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Poisson.

See Poisson for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Poisson distributions.

	Parameters

	
	rate – Floating point tensor, the rate parameter. rate must be positive.
Must specify exactly one of rate and log_rate.

	log_rate – Floating point tensor, the log of the rate parameter.
Must specify exactly one of rate and log_rate.

	interpolate_nondiscrete – Python bool. When False,
log_prob returns -inf (and prob returns 0) for non-integer
inputs. When True, log_prob evaluates the continuous function
k * log_rate - lgamma(k+1) - rate, which matches the Poisson pmf
at integer arguments k (note that this function is not itself
a normalized probability log-density).
Default value: True.

	validate_args – Python bool. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.

	Raises

	
	ValueError – if none or both of rate, log_rate are specified.

	TypeError – if rate is not a float-type.

	TypeError – if log_rate is not a float-type.

	
inferpy.models.random_variable.PoissonLogNormalQuadratureCompound(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for PoissonLogNormalQuadratureCompound.

See PoissonLogNormalQuadratureCompound for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Constructs the PoissonLogNormalQuadratureCompound`.

Note: probs returned by (optional) quadrature_fn are presumed to be
either a length-quadrature_size vector or a batch of vectors in 1-to-1
correspondence with the returned grid. (I.e., broadcasting is only
partially supported.)

	Parameters

	
	loc – float-like (batch of) scalar Tensor; the location parameter of
the LogNormal prior.

	scale – float-like (batch of) scalar Tensor; the scale parameter of
the LogNormal prior.

	quadrature_size – Python int scalar representing the number of quadrature
points.

	quadrature_fn – Python callable taking loc, scale,
quadrature_size, validate_args and returning tuple(grid, probs)
representing the LogNormal grid and corresponding normalized weight.
normalized) weight.
Default value: quadrature_scheme_lognormal_quantiles.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if quadrature_grid and quadrature_probs have different base
dtype.

	
inferpy.models.random_variable.QuantizedDistribution(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for QuantizedDistribution.

See QuantizedDistribution for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a Quantized Distribution representing Y = ceiling(X).

Some properties are inherited from the distribution defining X. Example:
allow_nan_stats is determined for this QuantizedDistribution by reading
the distribution.

	Parameters

	
	distribution – The base distribution class to transform. Typically an
instance of Distribution.

	low – Tensor with same dtype as this distribution and shape
able to be added to samples. Should be a whole number. Default None.
If provided, base distribution’s prob should be defined at
low.

	high – Tensor with same dtype as this distribution and shape
able to be added to samples. Should be a whole number. Default None.
If provided, base distribution’s prob should be defined at
high - 1.
high must be strictly greater than low.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	name – Python str name prefixed to Ops created by this class.

	Raises

	
	TypeError – If dist_cls is not a subclass of
Distribution or continuous.

	NotImplementedError – If the base distribution does not implement cdf.

	
class inferpy.models.random_variable.RandomVariable(var, name, is_datamodel, ed_cls, var_args, var_kwargs, sample_shape, is_observed, observed_value)

	Bases: object

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

	
build_in_session(sess)

	Allow to build a copy of the random variable but running previously each parameter in the tf session.
This way, it uses the value of each tf variable or placeholder as a tensor, not as a tf variable or placeholder.
If this random variable is a ed random variable directly assigned to .var, we cannot re-create it. In this
case, return self.
:param sess: tf session used to run each parameter used to build this random variable.
:returns: the random variable object

	
copy()

	Makes a of the current random variable where the distribution parameters are fixed.
:return: new object of class RandomVariable

	
property type

	

	
inferpy.models.random_variable.RelaxedBernoulli(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for RelaxedBernoulli.

See RelaxedBernoulli for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct RelaxedBernoulli distributions.

	Parameters

	
	temperature – An 0-D Tensor, representing the temperature
of a set of RelaxedBernoulli distributions. The temperature should be
positive.

	logits – An N-D Tensor representing the log-odds
of a positive event. Each entry in the Tensor parametrizes
an independent RelaxedBernoulli distribution where the probability of an
event is sigmoid(logits). Only one of logits or probs should be
passed in.

	probs – An N-D Tensor representing the probability of a positive event.
Each entry in the Tensor parameterizes an independent Bernoulli
distribution. Only one of logits or probs should be passed in.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – If both probs and logits are passed, or if neither.

	
inferpy.models.random_variable.RelaxedOneHotCategorical(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for RelaxedOneHotCategorical.

See RelaxedOneHotCategorical for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize RelaxedOneHotCategorical using class log-probabilities.

	Parameters

	
	temperature – An 0-D Tensor, representing the temperature
of a set of RelaxedOneHotCategorical distributions. The temperature
should be positive.

	logits – An N-D Tensor, N >= 1, representing the log probabilities
of a set of RelaxedOneHotCategorical distributions. The first
N - 1 dimensions index into a batch of independent distributions and
the last dimension represents a vector of logits for each class. Only
one of logits or probs should be passed in.

	probs – An N-D Tensor, N >= 1, representing the probabilities
of a set of RelaxedOneHotCategorical distributions. The first N - 1
dimensions index into a batch of independent distributions and the last
dimension represents a vector of probabilities for each class. Only one
of logits or probs should be passed in.

	validate_args – Unused in this distribution.

	allow_nan_stats – Python bool, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc…) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

	name – A name for this distribution (optional).

	
inferpy.models.random_variable.Sample(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Sample.

See Sample for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct the Sample distribution.

	Parameters

	
	distribution – The base distribution instance to transform. Typically an
instance of Distribution.

	sample_shape – int scalar or vector Tensor representing the shape of a
single sample.

	validate_args – Python bool. Whether to validate input with asserts.
If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.

	name – The name for ops managed by the distribution.
Default value: None (i.e., ‘Sample’ + distribution.name).

	
inferpy.models.random_variable.SinhArcsinh(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for SinhArcsinh.

See SinhArcsinh for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct SinhArcsinh distribution on (-inf, inf).

Arguments (loc, scale, skewness, tailweight) must have broadcastable shape
(indexing batch dimensions). They must all have the same dtype.

	Parameters

	
	loc – Floating-point Tensor.

	scale – Tensor of same dtype as loc.

	skewness – Skewness parameter. Default is 0.0 (no skew).

	tailweight – Tailweight parameter. Default is 1.0 (unchanged tailweight)

	distribution – tf.Distribution-like instance. Distribution that is
transformed to produce this distribution.
Default is tfd.Normal(0., 1.).
Must be a scalar-batch, scalar-event distribution. Typically
distribution.reparameterization_type = FULLY_REPARAMETERIZED or it is
a function of non-trainable parameters. WARNING: If you backprop through
a SinhArcsinh sample and distribution is not
FULLY_REPARAMETERIZED yet is a function of trainable variables, then
the gradient will be incorrect!

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.StudentT(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for StudentT.

See StudentT for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Student’s t distributions.

The distributions have degree of freedom df, mean loc, and scale
scale.

The parameters df, loc, and scale must be shaped in a way that
supports broadcasting (e.g. df + loc + scale is a valid operation).

	Parameters

	
	df – Floating-point Tensor. The degrees of freedom of the
distribution(s). df must contain only positive values.

	loc – Floating-point Tensor. The mean(s) of the distribution(s).

	scale – Floating-point Tensor. The scaling factor(s) for the
distribution(s). Note that scale is not technically the standard
deviation of this distribution but has semantics more similar to
standard deviation than variance.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if loc and scale are different dtypes.

	
inferpy.models.random_variable.StudentTProcess(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for StudentTProcess.

See StudentTProcess for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Instantiate a StudentTProcess Distribution.

	Parameters

	
	df – Positive Floating-point Tensor representing the degrees of freedom.
Must be greater than 2.

	kernel – PositiveSemidefiniteKernel-like instance representing the
TP’s covariance function.

	index_points – float Tensor representing finite (batch of) vector(s) of
points in the index set over which the TP is defined. Shape has the form
[b1, …, bB, e, f1, …, fF] where F is the number of feature
dimensions and must equal kernel.feature_ndims and e is the number
(size) of index points in each batch. Ultimately this distribution
corresponds to a e-dimensional multivariate Student’s T. The batch
shape must be broadcastable with kernel.batch_shape and any batch dims
yielded by mean_fn.

	mean_fn – Python callable that acts on index_points to produce a (batch
of) vector(s) of mean values at index_points. Takes a Tensor of
shape [b1, …, bB, f1, …, fF] and returns a Tensor whose shape is
broadcastable with [b1, …, bB]. Default value: None implies
constant zero function.

	jitter – float scalar Tensor added to the diagonal of the covariance
matrix to ensure positive definiteness of the covariance matrix.
Default value: 1e-6.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.
Default value: False.

	name – Python str name prefixed to Ops created by this class.
Default value: “StudentTProcess”.

	Raises

	ValueError – if mean_fn is not None and is not callable.

	
inferpy.models.random_variable.TransformedDistribution(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for TransformedDistribution.

See TransformedDistribution for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a Transformed Distribution.

	Parameters

	
	distribution – The base distribution instance to transform. Typically an
instance of Distribution.

	bijector – The object responsible for calculating the transformation.
Typically an instance of Bijector.

	batch_shape – integer vector Tensor which overrides distribution
batch_shape; valid only if distribution.is_scalar_batch().

	event_shape – integer vector Tensor which overrides distribution
event_shape; valid only if distribution.is_scalar_event().

	kwargs_split_fn – Python callable which takes a kwargs dict and returns
a tuple of kwargs dict`s for each of the `distribution and bijector
parameters respectively.
Default value: _default_kwargs_split_fn (i.e.,

	`lambda kwargs: (kwargs.get(‘distribution_kwargs’, {}),
	kwargs.get(‘bijector_kwargs’, {}))`)

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	parameters – Locals dict captured by subclass constructor, to be used for
copy/slice re-instantiation operations.

	name – Python str name prefixed to Ops created by this class. Default:
bijector.name + distribution.name.

	
inferpy.models.random_variable.Triangular(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Triangular.

See Triangular for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Triangular distributions.

	Parameters

	
	low – Floating point tensor, lower boundary of the output interval. Must
have low < high.
Default value: 0.

	high – Floating point tensor, upper boundary of the output interval. Must
have low < high.
Default value: 1.

	peak – Floating point tensor, mode of the output interval. Must have
low <= peak and peak <= high.
Default value: 0.5.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘Triangular’.

	Raises

	InvalidArgumentError – if validate_args=True and one of the following is
True:
* low >= high.
* peak > high.
* low > peak.

	
inferpy.models.random_variable.TruncatedNormal(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for TruncatedNormal.

See TruncatedNormal for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct TruncatedNormal.

All parameters of the distribution will be broadcast to the same shape,
so the resulting distribution will have a batch_shape of the broadcast
shape of all parameters.

	Parameters

	
	loc – Floating point tensor; the mean of the normal distribution(s) (
note that the mean of the resulting distribution will be different
since it is modified by the bounds).

	scale – Floating point tensor; the std deviation of the normal
distribution(s).

	low – float Tensor representing lower bound of the distribution’s
support. Must be such that low < high.

	high – float Tensor representing upper bound of the distribution’s
support. Must be such that low < high.

	validate_args – Python bool, default False. When True distribution
parameters are checked at run-time.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.Uniform(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Uniform.

See Uniform for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Uniform distributions.

	Parameters

	
	low – Floating point tensor, lower boundary of the output interval. Must
have low < high.

	high – Floating point tensor, upper boundary of the output interval. Must
have low < high.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	InvalidArgumentError – if low >= high and validate_args=False.

	
inferpy.models.random_variable.VariationalGaussianProcess(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VariationalGaussianProcess.

See VariationalGaussianProcess for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Instantiate a VariationalGaussianProcess Distribution.

	Parameters

	
	kernel – PositiveSemidefiniteKernel-like instance representing the
GP’s covariance function.

	index_points – float Tensor representing finite (batch of) vector(s) of
points in the index set over which the VGP is defined. Shape has the
form [b1, …, bB, e1, f1, …, fF] where F is the number of feature
dimensions and must equal kernel.feature_ndims and e1 is the number
(size) of index points in each batch (we denote it e1 to distinguish
it from the numer of inducing index points, denoted e2 below).
Ultimately the VariationalGaussianProcess distribution corresponds to an
e1-dimensional multivariate normal. The batch shape must be
broadcastable with kernel.batch_shape, the batch shape of
inducing_index_points, and any batch dims yielded by mean_fn.

	inducing_index_points – float Tensor of locations of inducing points in
the index set. Shape has the form [b1, …, bB, e2, f1, …, fF], just
like index_points. The batch shape components needn’t be identical to
those of index_points, but must be broadcast compatible with them.

	variational_inducing_observations_loc – float Tensor; the mean of the
(full-rank Gaussian) variational posterior over function values at the
inducing points, conditional on observed data. Shape has the form [b1,
…, bB, e2], where b1, …, bB is broadcast compatible with other
parameters’ batch shapes, and e2 is the number of inducing points.

	variational_inducing_observations_scale – float Tensor; the scale
matrix of the (full-rank Gaussian) variational posterior over function
values at the inducing points, conditional on observed data. Shape has
the form [b1, …, bB, e2, e2], where b1, …, bB is broadcast
compatible with other parameters and e2 is the number of inducing
points.

	mean_fn – Python callable that acts on index points to produce a (batch
of) vector(s) of mean values at those index points. Takes a Tensor of
shape [b1, …, bB, f1, …, fF] and returns a Tensor whose shape is
(broadcastable with) [b1, …, bB]. Default value: None implies
constant zero function.

	observation_noise_variance – float Tensor representing the variance
of the noise in the Normal likelihood distribution of the model. May be
batched, in which case the batch shape must be broadcastable with the
shapes of all other batched parameters (kernel.batch_shape,
index_points, etc.).
Default value: 0.

	predictive_noise_variance – float Tensor representing additional
variance in the posterior predictive model. If None, we simply re-use
observation_noise_variance for the posterior predictive noise. If set
explicitly, however, we use the given value. This allows us, for
example, to omit predictive noise variance (by setting this to zero) to
obtain noiseless posterior predictions of function values, conditioned
on noisy observations.

	jitter – float scalar Tensor added to the diagonal of the covariance
matrix to ensure positive definiteness of the covariance matrix.
Default value: 1e-6.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.
Default value: False.

	name – Python str name prefixed to Ops created by this class.
Default value: “VariationalGaussianProcess”.

	Raises

	ValueError – if mean_fn is not None and is not callable.

	
inferpy.models.random_variable.VectorDeterministic(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorDeterministic.

See VectorDeterministic for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a VectorDeterministic distribution on R^k, for k >= 0.

Note that there is only one point in R^0, the “point” []. So if k = 0
then self.prob([]) == 1.

The atol and rtol parameters allow for some slack in pmf
computations, e.g. due to floating-point error.

```
pmf(x; loc)


= 1, if All[Abs(x - loc) <= atol + rtol * Abs(loc)],
= 0, otherwise




```


	Parameters

	
	loc – Numeric Tensor of shape [B1, …, Bb, k], with b >= 0, k >= 0
The point (or batch of points) on which this distribution is supported.

	atol – Non-negative Tensor of same dtype as loc and broadcastable
shape. The absolute tolerance for comparing closeness to loc.
Default is 0.

	rtol – Non-negative Tensor of same dtype as loc and broadcastable
shape. The relative tolerance for comparing closeness to loc.
Default is 0.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.random_variable.VectorDiffeomixture(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorDiffeomixture.

See VectorDiffeomixture for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Constructs the VectorDiffeomixture on R^d.

The vector diffeomixture (VDM) approximates the compound distribution

`none
p(x) = int p(x | z) p(z) dz,
where z is in the K-simplex, and
p(x | z) := p(x | loc=sum_k z[k] loc[k], scale=sum_k z[k] scale[k])
`

	Parameters

	
	mix_loc – float-like Tensor with shape [b1, …, bB, K-1].
In terms of samples, larger mix_loc[…, k] ==>
Z is more likely to put more weight on its kth component.

	temperature – float-like Tensor. Broadcastable with mix_loc.
In terms of samples, smaller temperature means one component is more
likely to dominate. I.e., smaller temperature makes the VDM look more
like a standard mixture of K components.

	distribution – tfp.distributions.Distribution-like instance. Distribution
from which d iid samples are used as input to the selected affine
transformation. Must be a scalar-batch, scalar-event distribution.
Typically distribution.reparameterization_type = FULLY_REPARAMETERIZED
or it is a function of non-trainable parameters. WARNING: If you
backprop through a VectorDiffeomixture sample and the distribution
is not FULLY_REPARAMETERIZED yet is a function of trainable variables,
then the gradient will be incorrect!

	loc – Length-K list of float-type Tensor`s. The `k-th element
represents the shift used for the k-th affine transformation. If
the k-th item is None, loc is implicitly 0. When specified,
must have shape [B1, …, Bb, d] where b >= 0 and d is the event
size.

	scale – Length-K list of LinearOperator`s. Each should be
positive-definite and operate on a `d-dimensional vector space. The
k-th element represents the scale used for the k-th affine
transformation. LinearOperator`s must have shape `[B1, …, Bb, d, d],
b >= 0, i.e., characterizes b-batches of d x d matrices

	quadrature_size – Python int scalar representing number of
quadrature points. Larger quadrature_size means q_N(x) better
approximates p(x).

	quadrature_fn – Python callable taking normal_loc, normal_scale,
quadrature_size, validate_args and returning tuple(grid, probs)
representing the SoftmaxNormal grid and corresponding normalized weight.
normalized) weight.
Default value: quadrature_scheme_softmaxnormal_quantiles.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	
	ValueError – if not scale or len(scale) < 2.

	ValueError – if len(loc) != len(scale)

	ValueError – if quadrature_grid_and_probs is not None and
len(quadrature_grid_and_probs[0]) != len(quadrature_grid_and_probs[1])

	ValueError – if validate_args and any not scale.is_positive_definite.

	TypeError – if any scale.dtype != scale[0].dtype.

	TypeError – if any loc.dtype != scale[0].dtype.

	NotImplementedError – if len(scale) != 2.

	ValueError – if not distribution.is_scalar_batch.

	ValueError – if not distribution.is_scalar_event.

	
inferpy.models.random_variable.VectorExponentialDiag(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorExponentialDiag.

See VectorExponentialDiag for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Vector Exponential distribution supported on a subset of R^k.

The batch_shape is the broadcast shape between loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc (if provided) must broadcast with this.

Recall that covariance = scale @ scale.T.

`none
scale = diag(scale_diag + scale_identity_multiplier * ones(k))
`

where:

	scale_diag.shape = [k], and,

	scale_identity_multiplier.shape = [].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then
scale is the Identity matrix.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	scale_diag – Non-zero, floating-point Tensor representing a diagonal
matrix added to scale. May have shape [B1, …, Bb, k], b >= 0,
and characterizes b-batches of k x k diagonal matrices added to
scale. When both scale_identity_multiplier and scale_diag are
None then scale is the Identity.

	scale_identity_multiplier – Non-zero, floating-point Tensor representing
a scaled-identity-matrix added to scale. May have shape
[B1, …, Bb], b >= 0, and characterizes b-batches of scaled
k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is
the Identity.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if at most scale_identity_multiplier is specified.

	
inferpy.models.random_variable.VectorLaplaceDiag(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorLaplaceDiag.

See VectorLaplaceDiag for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Vector Laplace distribution on R^k.

The batch_shape is the broadcast shape between loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc (if provided) must broadcast with this.

Recall that covariance = 2 * scale @ scale.T.

`none
scale = diag(scale_diag + scale_identity_multiplier * ones(k))
`

where:

	scale_diag.shape = [k], and,

	scale_identity_multiplier.shape = [].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then
scale is the Identity matrix.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	scale_diag – Non-zero, floating-point Tensor representing a diagonal
matrix added to scale. May have shape [B1, …, Bb, k], b >= 0,
and characterizes b-batches of k x k diagonal matrices added to
scale. When both scale_identity_multiplier and scale_diag are
None then scale is the Identity.

	scale_identity_multiplier – Non-zero, floating-point Tensor representing
a scaled-identity-matrix added to scale. May have shape
[B1, …, Bb], b >= 0, and characterizes b-batches of scaled
k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is
the Identity.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if at most scale_identity_multiplier is specified.

	
inferpy.models.random_variable.VectorSinhArcsinhDiag(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorSinhArcsinhDiag.

See VectorSinhArcsinhDiag for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct VectorSinhArcsinhDiag distribution on R^k.

The arguments scale_diag and scale_identity_multiplier combine to
define the diagonal scale referred to in this class docstring:

`none
scale = diag(scale_diag + scale_identity_multiplier * ones(k))
`

The batch_shape is the broadcast shape between loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc (if provided) must broadcast with this

Additional leading dimensions (if any) will index batches.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	scale_diag – Non-zero, floating-point Tensor representing a diagonal
matrix added to scale. May have shape [B1, …, Bb, k], b >= 0,
and characterizes b-batches of k x k diagonal matrices added to
scale. When both scale_identity_multiplier and scale_diag are
None then scale is the Identity.

	scale_identity_multiplier – Non-zero, floating-point Tensor representing
a scale-identity-matrix added to scale. May have shape
[B1, …, Bb], b >= 0, and characterizes b-batches of scale
k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale
is the Identity.

	skewness – Skewness parameter. floating-point Tensor with shape
broadcastable with event_shape.

	tailweight – Tailweight parameter. floating-point Tensor with shape
broadcastable with event_shape.

	distribution – tf.Distribution-like instance. Distribution from which k
iid samples are used as input to transformation F. Default is
tfd.Normal(loc=0., scale=1.).
Must be a scalar-batch, scalar-event distribution. Typically
distribution.reparameterization_type = FULLY_REPARAMETERIZED or it is
a function of non-trainable parameters. WARNING: If you backprop through
a VectorSinhArcsinhDiag sample and distribution is not
FULLY_REPARAMETERIZED yet is a function of trainable variables, then
the gradient will be incorrect!

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if at most scale_identity_multiplier is specified.

	
inferpy.models.random_variable.VonMises(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VonMises.

See VonMises for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct von Mises distributions with given location and concentration.

The parameters loc and concentration must be shaped in a way that
supports broadcasting (e.g. loc + concentration is a valid operation).

	Parameters

	
	loc – Floating point tensor, the circular means of the distribution(s).

	concentration – Floating point tensor, the level of concentration of the
distribution(s) around loc. Must take non-negative values.
concentration = 0 defines a Uniform distribution, while
concentration = +inf indicates a Deterministic distribution at loc.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or more
of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if loc and concentration are different dtypes.

	
inferpy.models.random_variable.VonMisesFisher(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VonMisesFisher.

See VonMisesFisher for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Creates a new VonMisesFisher instance.

	Parameters

	
	mean_direction – Floating-point Tensor with shape [B1, … Bn, D].
A unit vector indicating the mode of the distribution, or the
unit-normalized direction of the mean. (This is not in general the
mean of the distribution; the mean is not generally in the support of
the distribution.) NOTE: D is currently restricted to <= 5.

	concentration – Floating-point Tensor having batch shape [B1, … Bn]
broadcastable with mean_direction. The level of concentration of
samples around the mean_direction. concentration=0 indicates a
uniform distribution over the unit hypersphere, and concentration=+inf
indicates a Deterministic distribution (delta function) at
mean_direction.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – For known-bad arguments, i.e. unsupported event dimension.

	
inferpy.models.random_variable.Wishart(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Wishart.

See Wishart for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Wishart distributions.

	Parameters

	
	df – float or double Tensor. Degrees of freedom, must be greater than
or equal to dimension of the scale matrix.

	scale – float or double Tensor. The symmetric positive definite
scale matrix of the distribution. Exactly one of scale and
‘scale_tril` must be passed.

	scale_tril – float or double Tensor. The Cholesky factorization
of the symmetric positive definite scale matrix of the distribution.
Exactly one of scale and ‘scale_tril` must be passed.

	input_output_cholesky – Python bool. If True, functions whose input or
output have the semantics of samples assume inputs are in Cholesky form
and return outputs in Cholesky form. In particular, if this flag is
True, input to log_prob is presumed of Cholesky form and output from
sample, mean, and mode are of Cholesky form. Setting this
argument to True is purely a computational optimization and does not
change the underlying distribution; for instance, mean returns the
Cholesky of the mean, not the mean of Cholesky factors. The variance
and stddev methods are unaffected by this flag.
Default value: False (i.e., input/output does not have Cholesky
semantics).

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if zero or both of ‘scale’ and ‘scale_tril’ are passed in.

	
inferpy.models.random_variable.Zipf(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Zipf.

See Zipf for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Zipf distributions.

	Parameters

	
	power – Float like Tensor representing the power parameter. Must be
strictly greater than 1.

	dtype – The dtype of Tensor returned by sample.
Default value: tf.int32.

	interpolate_nondiscrete – Python bool. When False, log_prob returns
-inf (and prob returns 0) for non-integer inputs. When True,
log_prob evaluates the continuous function -power log(k) -
log(zeta(power)) , which matches the Zipf pmf at integer arguments k
(note that this function is not itself a normalized probability
log-density).
Default value: True.

	sample_maximum_iterations – Maximum number of iterations of allowable
iterations in sample. When validate_args=True, samples which fail to
reach convergence (subject to this cap) are masked out with
self.dtype.min or nan depending on self.dtype.is_integer.
Default value: 100.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or more
of the statistic’s batch members are undefined.
Default value: False.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘Zipf’.

	Raises

	TypeError – if power is not float like.

Module contents

	
inferpy.models.datamodel(size=None)

	This context is used to declare a plateau model. Random Variables and Parameters will use a sample_shape
defined by the argument size, or by the data_model.fit. If size is not specified, the default size 1,
or the size specified by fit will be used.

	
class inferpy.models.Parameter(initial_value, name=None)

	Bases: object

Random Variable parameter which can be optimized by an inference mechanism.

	
inferpy.models.probmodel(builder)

	Decorator to create probabilistic models. The function decorated
must be a function which declares the Random Variables in the model.
It is not required that the function returns such variables (they are
captured using ed.tape).

	
inferpy.models.Autoregressive(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Autoregressive.

See Autoregressive for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct an Autoregressive distribution.

	Parameters

	
	distribution_fn – Python callable which constructs a
tfd.Distribution-like instance from a Tensor (e.g.,
sample0). The function must respect the “autoregressive property”,
i.e., there exists a permutation of event such that each coordinate is a
diffeomorphic function of on preceding coordinates.

	sample0 – Initial input to distribution_fn; used to
build the distribution in __init__ which in turn specifies this
distribution’s properties, e.g., event_shape, batch_shape, dtype.
If unspecified, then distribution_fn should be default constructable.

	num_steps – Number of times distribution_fn is composed from samples,
e.g., num_steps=2 implies
distribution_fn(distribution_fn(sample0).sample(n)).sample().

	validate_args – Python bool. Whether to validate input with asserts.
If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.
Default value: “Autoregressive”.

	Raises

	
	ValueError – if num_steps and
num_elements(distribution_fn(sample0).event_shape) are both None.

	ValueError – if num_steps < 1.

	
inferpy.models.BatchReshape(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for BatchReshape.

See BatchReshape for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct BatchReshape distribution.

	Parameters

	
	distribution – The base distribution instance to reshape. Typically an
instance of Distribution.

	batch_shape – Positive int-like vector-shaped Tensor representing
the new shape of the batch dimensions. Up to one dimension may contain
-1, meaning the remainder of the batch size.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – The name to give Ops created by the initializer.
Default value: “BatchReshape” + distribution.name.

	Raises

	
	ValueError – if batch_shape is not a vector.

	ValueError – if batch_shape has non-positive elements.

	ValueError – if batch_shape size is not the same as a
distribution.batch_shape size.

	
inferpy.models.Bernoulli(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Bernoulli.

See Bernoulli for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Bernoulli distributions.

	Parameters

	
	logits – An N-D Tensor representing the log-odds of a 1 event. Each
entry in the Tensor parametrizes an independent Bernoulli distribution
where the probability of an event is sigmoid(logits). Only one of
logits or probs should be passed in.

	probs – An N-D Tensor representing the probability of a 1
event. Each entry in the Tensor parameterizes an independent
Bernoulli distribution. Only one of logits or probs should be passed
in.

	dtype – The type of the event samples. Default: int32.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – If p and logits are passed, or if neither are passed.

	
inferpy.models.Beta(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Beta.

See Beta for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Beta distributions.

	Parameters

	
	concentration1 – Positive floating-point Tensor indicating mean
number of successes; aka “alpha”. Implies self.dtype and
self.batch_shape, i.e.,
concentration1.shape = [N1, N2, …, Nm] = self.batch_shape.

	concentration0 – Positive floating-point Tensor indicating mean
number of failures; aka “beta”. Otherwise has same semantics as
concentration1.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.Binomial(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Binomial.

See Binomial for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Binomial distributions.

	Parameters

	
	total_count – Non-negative floating point tensor with shape broadcastable
to [N1,…, Nm] with m >= 0 and the same dtype as probs or
logits. Defines this as a batch of N1 x … x Nm different Binomial
distributions. Its components should be equal to integer values.

	logits – Floating point tensor representing the log-odds of a
positive event with shape broadcastable to [N1,…, Nm] m >= 0, and
the same dtype as total_count. Each entry represents logits for the
probability of success for independent Binomial distributions. Only one
of logits or probs should be passed in.

	probs – Positive floating point tensor with shape broadcastable to
[N1,…, Nm] m >= 0, probs in [0, 1]. Each entry represents the
probability of success for independent Binomial distributions. Only one
of logits or probs should be passed in.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.Blockwise(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Blockwise.

See Blockwise for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct the Blockwise distribution.

	Parameters

	
	distributions – Python list of tfp.distributions.Distribution
instances. All distribution instances must have the same batch_shape
and all must have event_ndims==1, i.e., be vector-variate
distributions.

	dtype_override – samples of distributions will be cast to this dtype.
If unspecified, all distributions must have the same dtype.
Default value: None (i.e., do not cast).

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.Categorical(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Categorical.

See Categorical for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize Categorical distributions using class log-probabilities.

	Parameters

	
	logits – An N-D Tensor, N >= 1, representing the log probabilities
of a set of Categorical distributions. The first N - 1 dimensions
index into a batch of independent distributions and the last dimension
represents a vector of logits for each class. Only one of logits or
probs should be passed in.

	probs – An N-D Tensor, N >= 1, representing the probabilities
of a set of Categorical distributions. The first N - 1 dimensions
index into a batch of independent distributions and the last dimension
represents a vector of probabilities for each class. Only one of
logits or probs should be passed in.

	dtype – The type of the event samples (default: int32).

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.Cauchy(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Cauchy.

See Cauchy for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Cauchy distributions.

The parameters loc and scale must be shaped in a way that supports
broadcasting (e.g. loc + scale is a valid operation).

	Parameters

	
	loc – Floating point tensor; the modes of the distribution(s).

	scale – Floating point tensor; the locations of the distribution(s).
Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if loc and scale have different dtype.

	
inferpy.models.Chi(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Chi.

See Chi for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Chi distributions with parameter df.

	Parameters

	
	df – Floating point tensor, the degrees of freedom of the
distribution(s). df must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value NaN to indicate the result
is undefined. When False, an exception is raised if one or more of the
statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘Chi’.

	
inferpy.models.Chi2(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Chi2.

See Chi2 for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Chi2 distributions with parameter df.

	Parameters

	
	df – Floating point tensor, the degrees of freedom of the
distribution(s). df must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.Chi2WithAbsDf(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Chi2WithAbsDf.

See Chi2WithAbsDf for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2019-06-05.
Instructions for updating:
Chi2WithAbsDf is deprecated, use Chi2(df=tf.floor(tf.abs(df))) instead.

	
inferpy.models.Deterministic(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Deterministic.

See Deterministic for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a scalar Deterministic distribution.

The atol and rtol parameters allow for some slack in pmf, cdf
computations, e.g. due to floating-point error.

```
pmf(x; loc)


= 1, if Abs(x - loc) <= atol + rtol * Abs(loc),
= 0, otherwise.




```


	Parameters

	
	loc – Numeric Tensor of shape [B1, …, Bb], with b >= 0.
The point (or batch of points) on which this distribution is supported.

	atol – Non-negative Tensor of same dtype as loc and broadcastable
shape. The absolute tolerance for comparing closeness to loc.
Default is 0.

	rtol – Non-negative Tensor of same dtype as loc and broadcastable
shape. The relative tolerance for comparing closeness to loc.
Default is 0.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.VectorDeterministic(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorDeterministic.

See VectorDeterministic for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a VectorDeterministic distribution on R^k, for k >= 0.

Note that there is only one point in R^0, the “point” []. So if k = 0
then self.prob([]) == 1.

The atol and rtol parameters allow for some slack in pmf
computations, e.g. due to floating-point error.

```
pmf(x; loc)


= 1, if All[Abs(x - loc) <= atol + rtol * Abs(loc)],
= 0, otherwise




```


	Parameters

	
	loc – Numeric Tensor of shape [B1, …, Bb, k], with b >= 0, k >= 0
The point (or batch of points) on which this distribution is supported.

	atol – Non-negative Tensor of same dtype as loc and broadcastable
shape. The absolute tolerance for comparing closeness to loc.
Default is 0.

	rtol – Non-negative Tensor of same dtype as loc and broadcastable
shape. The relative tolerance for comparing closeness to loc.
Default is 0.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.Dirichlet(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Dirichlet.

See Dirichlet for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Dirichlet distributions.

	Parameters

	
	concentration – Positive floating-point Tensor indicating mean number
of class occurrences; aka “alpha”. Implies self.dtype, and
self.batch_shape, self.event_shape, i.e., if
concentration.shape = [N1, N2, …, Nm, k] then
batch_shape = [N1, N2, …, Nm] and
event_shape = [k].

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.DirichletMultinomial(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for DirichletMultinomial.

See DirichletMultinomial for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of DirichletMultinomial distributions.

	Parameters

	
	total_count – Non-negative floating point tensor, whose dtype is the same
as concentration. The shape is broadcastable to [N1,…, Nm] with
m >= 0. Defines this as a batch of N1 x … x Nm different
Dirichlet multinomial distributions. Its components should be equal to
integer values.

	concentration – Positive floating point tensor, whose dtype is the
same as n with shape broadcastable to [N1,…, Nm, K] m >= 0.
Defines this as a batch of N1 x … x Nm different K class Dirichlet
multinomial distributions.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.ConditionalDistribution(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for ConditionalDistribution.

See ConditionalDistribution for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Constructs the Distribution.

This is a private method for subclass use.

	Parameters

	
	dtype – The type of the event samples. None implies no type-enforcement.

	reparameterization_type – Instance of ReparameterizationType.
If tfd.FULLY_REPARAMETERIZED, this
Distribution can be reparameterized in terms of some standard
distribution with a function whose Jacobian is constant for the support
of the standard distribution. If tfd.NOT_REPARAMETERIZED,
then no such reparameterization is available.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	parameters – Python dict of parameters used to instantiate this
Distribution.

	graph_parents – Python list of graph prerequisites of this
Distribution.

	name – Python str name prefixed to Ops created by this class. Default:
subclass name.

	Raises

	ValueError – if any member of graph_parents is None or not a Tensor.

	
inferpy.models.Distribution(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Distribution.

See Distribution for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Constructs the Distribution.

This is a private method for subclass use.

	Parameters

	
	dtype – The type of the event samples. None implies no type-enforcement.

	reparameterization_type – Instance of ReparameterizationType.
If tfd.FULLY_REPARAMETERIZED, this
Distribution can be reparameterized in terms of some standard
distribution with a function whose Jacobian is constant for the support
of the standard distribution. If tfd.NOT_REPARAMETERIZED,
then no such reparameterization is available.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	parameters – Python dict of parameters used to instantiate this
Distribution.

	graph_parents – Python list of graph prerequisites of this
Distribution.

	name – Python str name prefixed to Ops created by this class. Default:
subclass name.

	Raises

	ValueError – if any member of graph_parents is None or not a Tensor.

	
inferpy.models.Empirical(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Empirical.

See Empirical for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize Empirical distributions.

	Parameters

	
	samples – Numeric Tensor of shape [B1, …, Bk, S, E1, …, En]`,
k, n >= 0. Samples or batches of samples on which the distribution
is based. The first k dimensions index into a batch of independent
distributions. Length of S dimension determines number of samples
in each multiset. The last n dimension represents samples for each
distribution. n is specified by argument event_ndims.

	event_ndims – Python int32, default 0. number of dimensions for each
event. When 0 this distribution has scalar samples. When 1 this
distribution has vector-like samples.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value NaN to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if the rank of samples < event_ndims + 1.

	
inferpy.models.Exponential(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Exponential.

See Exponential for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Exponential distribution with parameter rate.

	Parameters

	
	rate – Floating point tensor, equivalent to 1 / mean. Must contain only
positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.FiniteDiscrete(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for FiniteDiscrete.

See FiniteDiscrete for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a finite discrete contribution.

	Parameters

	
	outcomes – A 1-D floating or integer Tensor, representing a list of
possible outcomes in strictly ascending order.

	logits – A floating N-D Tensor, N >= 1, representing the log
probabilities of a set of FiniteDiscrete distributions. The first N -
1 dimensions index into a batch of independent distributions and the
last dimension represents a vector of logits for each discrete value.
Only one of logits or probs should be passed in.

	probs – A floating N-D Tensor, N >= 1, representing the probabilities
of a set of FiniteDiscrete distributions. The first N - 1 dimensions
index into a batch of independent distributions and the last dimension
represents a vector of probabilities for each discrete value. Only one
of logits or probs should be passed in.

	rtol – Tensor with same dtype as outcomes. The relative tolerance for
floating number comparison. Only effective when outcomes is a floating
Tensor. Default is 10 * eps.

	atol – Tensor with same dtype as outcomes. The absolute tolerance for
floating number comparison. Only effective when outcomes is a floating
Tensor. Default is 10 * eps.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may render incorrect outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value ‘NaN’ to indicate the
result is undefined. When False, an exception is raised if one or more
of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.Gamma(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Gamma.

See Gamma for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Gamma with concentration and rate parameters.

The parameters concentration and rate must be shaped in a way that
supports broadcasting (e.g. concentration + rate is a valid operation).

	Parameters

	
	concentration – Floating point tensor, the concentration params of the
distribution(s). Must contain only positive values.

	rate – Floating point tensor, the inverse scale params of the
distribution(s). Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if concentration and rate are different dtypes.

	
inferpy.models.GammaGamma(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for GammaGamma.

See GammaGamma for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initializes a batch of Gamma-Gamma distributions.

The parameters concentration and rate must be shaped in a way that
supports broadcasting (e.g.
concentration + mixing_concentration + mixing_rate is a valid operation).

	Parameters

	
	concentration – Floating point tensor, the concentration params of the
distribution(s). Must contain only positive values.

	mixing_concentration – Floating point tensor, the concentration params of
the mixing Gamma distribution(s). Must contain only positive values.

	mixing_rate – Floating point tensor, the rate params of the mixing Gamma
distribution(s). Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or more
of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if concentration and rate are different dtypes.

	
inferpy.models.GaussianProcess(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for GaussianProcess.

See GaussianProcess for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Instantiate a GaussianProcess Distribution.

	Parameters

	
	kernel – PositiveSemidefiniteKernel-like instance representing the
GP’s covariance function.

	index_points – float Tensor representing finite (batch of) vector(s) of
points in the index set over which the GP is defined. Shape has the form
[b1, …, bB, e, f1, …, fF] where F is the number of feature
dimensions and must equal kernel.feature_ndims and e is the number
(size) of index points in each batch. Ultimately this distribution
corresponds to a e-dimensional multivariate normal. The batch shape
must be broadcastable with kernel.batch_shape and any batch dims
yielded by mean_fn.

	mean_fn – Python callable that acts on index_points to produce a (batch
of) vector(s) of mean values at index_points. Takes a Tensor of
shape [b1, …, bB, f1, …, fF] and returns a Tensor whose shape is
broadcastable with [b1, …, bB]. Default value: None implies
constant zero function.

	observation_noise_variance – float Tensor representing the variance
of the noise in the Normal likelihood distribution of the model. May be
batched, in which case the batch shape must be broadcastable with the
shapes of all other batched parameters (kernel.batch_shape,
index_points, etc.).
Default value: 0.

	jitter – float scalar Tensor added to the diagonal of the covariance
matrix to ensure positive definiteness of the covariance matrix.
Default value: 1e-6.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.
Default value: False.

	name – Python str name prefixed to Ops created by this class.
Default value: “GaussianProcess”.

	Raises

	ValueError – if mean_fn is not None and is not callable.

	
inferpy.models.GaussianProcessRegressionModel(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for GaussianProcessRegressionModel.

See GaussianProcessRegressionModel for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a GaussianProcessRegressionModel instance.

	Parameters

	
	kernel – PositiveSemidefiniteKernel-like instance representing the
GP’s covariance function.

	index_points – float Tensor representing finite collection, or batch of
collections, of points in the index set over which the GP is defined.
Shape has the form [b1, …, bB, e, f1, …, fF] where F is the
number of feature dimensions and must equal kernel.feature_ndims and
e is the number (size) of index points in each batch. Ultimately this
distribution corresponds to an e-dimensional multivariate normal. The
batch shape must be broadcastable with kernel.batch_shape and any
batch dims yielded by mean_fn.

	observation_index_points – float Tensor representing finite collection,
or batch of collections, of points in the index set for which some data
has been observed. Shape has the form [b1, …, bB, e, f1, …, fF]
where F is the number of feature dimensions and must equal
kernel.feature_ndims, and e is the number (size) of index points in
each batch. [b1, …, bB, e] must be broadcastable with the shape of
observations, and [b1, …, bB] must be broadcastable with the
shapes of all other batched parameters (kernel.batch_shape,
index_points, etc). The default value is None, which corresponds to
the empty set of observations, and simply results in the prior
predictive model (a GP with noise of variance
predictive_noise_variance).

	observations – float Tensor representing collection, or batch of
collections, of observations corresponding to
observation_index_points. Shape has the form [b1, …, bB, e], which
must be brodcastable with the batch and example shapes of
observation_index_points. The batch shape [b1, …, bB] must be
broadcastable with the shapes of all other batched parameters
(kernel.batch_shape, index_points, etc.). The default value is
None, which corresponds to the empty set of observations, and simply
results in the prior predictive model (a GP with noise of variance
predictive_noise_variance).

	observation_noise_variance – float Tensor representing the variance
of the noise in the Normal likelihood distribution of the model. May be
batched, in which case the batch shape must be broadcastable with the
shapes of all other batched parameters (kernel.batch_shape,
index_points, etc.).
Default value: 0.

	predictive_noise_variance – float Tensor representing the variance in
the posterior predictive model. If None, we simply re-use
observation_noise_variance for the posterior predictive noise. If set
explicitly, however, we use this value. This allows us, for example, to
omit predictive noise variance (by setting this to zero) to obtain
noiseless posterior predictions of function values, conditioned on noisy
observations.

	mean_fn – Python callable that acts on index_points to produce a
collection, or batch of collections, of mean values at index_points.
Takes a Tensor of shape [b1, …, bB, f1, …, fF] and returns a
Tensor whose shape is broadcastable with [b1, …, bB].
Default value: None implies the constant zero function.

	jitter – float scalar Tensor added to the diagonal of the covariance
matrix to ensure positive definiteness of the covariance matrix.
Default value: 1e-6.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value NaN to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.
Default value: False.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘GaussianProcessRegressionModel’.

	Raises

	ValueError – if either
- only one of observations and observation_index_points is given, or
- mean_fn is not None and not callable.

	
inferpy.models.Geometric(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Geometric.

See Geometric for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Geometric distributions.

	Parameters

	
	logits – Floating-point Tensor with shape [B1, …, Bb] where b >= 0
indicates the number of batch dimensions. Each entry represents logits
for the probability of success for independent Geometric distributions
and must be in the range (-inf, inf]. Only one of logits or probs
should be specified.

	probs – Positive floating-point Tensor with shape [B1, …, Bb]
where b >= 0 indicates the number of batch dimensions. Each entry
represents the probability of success for independent Geometric
distributions and must be in the range (0, 1]. Only one of logits
or probs should be specified.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.Gumbel(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Gumbel.

See Gumbel for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Gumbel distributions with location and scale loc and scale.

The parameters loc and scale must be shaped in a way that supports
broadcasting (e.g. loc + scale is a valid operation).

	Parameters

	
	loc – Floating point tensor, the means of the distribution(s).

	scale – Floating point tensor, the scales of the distribution(s).
scale must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘Gumbel’.

	Raises

	TypeError – if loc and scale are different dtypes.

	
inferpy.models.HalfCauchy(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for HalfCauchy.

See HalfCauchy for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a half-Cauchy distribution with loc and scale.

	Parameters

	
	loc – Floating-point Tensor; the location(s) of the distribution(s).

	scale – Floating-point Tensor; the scale(s) of the distribution(s).
Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs. Default value: False (i.e. do not validate args).

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘HalfCauchy’.

	Raises

	TypeError – if loc and scale have different dtype.

	
inferpy.models.HalfNormal(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for HalfNormal.

See HalfNormal for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct HalfNormals with scale scale.

	Parameters

	
	scale – Floating point tensor; the scales of the distribution(s).
Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.HiddenMarkovModel(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for HiddenMarkovModel.

See HiddenMarkovModel for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize hidden Markov model.

	Parameters

	
	initial_distribution – A Categorical-like instance.
Determines probability of first hidden state in Markov chain.
The number of categories must match the number of categories of
transition_distribution as well as both the rightmost batch
dimension of transition_distribution and the rightmost batch
dimension of observation_distribution.

	transition_distribution – A Categorical-like instance.
The rightmost batch dimension indexes the probability distribution
of each hidden state conditioned on the previous hidden state.

	observation_distribution – A tfp.distributions.Distribution-like
instance. The rightmost batch dimension indexes the distribution
of each observation conditioned on the corresponding hidden state.

	num_steps – The number of steps taken in Markov chain. A python int.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.
Default value: “HiddenMarkovModel”.

	Raises

	
	ValueError – if num_steps is not at least 1.

	ValueError – if initial_distribution does not have scalar event_shape.

	ValueError – if transition_distribution does not have scalar
event_shape.

	ValueError – if transition_distribution and observation_distribution
are fully defined but don’t have matching rightmost dimension.

	
inferpy.models.Horseshoe(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Horseshoe.

See Horseshoe for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a Horseshoe distribution with scale.

	Parameters

	
	scale – Floating point tensor; the scales of the distribution(s).
Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs. Default value: False (i.e., do not validate args).

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or more
of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘Horseshoe’.

	
inferpy.models.Independent(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Independent.

See Independent for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a Independent distribution.

	Parameters

	
	distribution – The base distribution instance to transform. Typically an
instance of Distribution.

	reinterpreted_batch_ndims – Scalar, integer number of rightmost batch dims
which will be regarded as event dims. When None all but the first
batch axis (batch axis 0) will be transferred to event dimensions
(analogous to tf.layers.flatten).

	validate_args – Python bool. Whether to validate input with asserts.
If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.

	name – The name for ops managed by the distribution.
Default value: Independent + distribution.name.

	Raises

	ValueError – if reinterpreted_batch_ndims exceeds
distribution.batch_ndims

	
inferpy.models.InverseGamma(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for InverseGamma.

See InverseGamma for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct InverseGamma with concentration and scale parameters. (deprecated arguments)

Warning: SOME ARGUMENTS ARE DEPRECATED: (rate). They will be removed after 2019-05-08.
Instructions for updating:
The rate parameter is deprecated. Use scale instead.The rate parameter was always interpreted as a scale parameter, but erroneously misnamed.

The parameters concentration and scale must be shaped in a way that
supports broadcasting (e.g. concentration + scale is a valid operation).

	Parameters

	
	concentration – Floating point tensor, the concentration params of the
distribution(s). Must contain only positive values.

	scale – Floating point tensor, the scale params of the distribution(s).
Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	rate – Deprecated (mis-named) alias for scale.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if concentration and scale are different dtypes.

	
inferpy.models.InverseGaussian(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for InverseGaussian.

See InverseGaussian for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Constructs inverse Gaussian distribution with loc and concentration.

	Parameters

	
	loc – Floating-point Tensor, the loc params. Must contain only positive
values.

	concentration – Floating-point Tensor, the concentration params.
Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False (i.e. do not validate args).

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘InverseGaussian’.

	
inferpy.models.JointDistribution(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for JointDistribution.

See JointDistribution for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Constructs the Distribution.

This is a private method for subclass use.

	Parameters

	
	dtype – The type of the event samples. None implies no type-enforcement.

	reparameterization_type – Instance of ReparameterizationType.
If tfd.FULLY_REPARAMETERIZED, this
Distribution can be reparameterized in terms of some standard
distribution with a function whose Jacobian is constant for the support
of the standard distribution. If tfd.NOT_REPARAMETERIZED,
then no such reparameterization is available.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	parameters – Python dict of parameters used to instantiate this
Distribution.

	graph_parents – Python list of graph prerequisites of this
Distribution.

	name – Python str name prefixed to Ops created by this class. Default:
subclass name.

	Raises

	ValueError – if any member of graph_parents is None or not a Tensor.

	
inferpy.models.JointDistributionCoroutine(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for JointDistributionCoroutine.

See JointDistributionCoroutine for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct the JointDistributionCoroutine distribution.

	Parameters

	
	model – A generator that yields a sequence of tfd.Distribution-like
instances.

	sample_dtype – Samples from this distribution will be structured like
tf.nest.pack_sequence_as(sample_dtype, list_). sample_dtype is only
used for tf.nest.pack_sequence_as structuring of outputs, never
casting (which is the responsibility of the component distributions).
Default value: None (i.e., tuple).

	validate_args – Python bool. Whether to validate input with asserts.
If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.
Default value: False.

	name – The name for ops managed by the distribution.
Default value: None (i.e., “JointDistributionCoroutine”).

	
inferpy.models.JointDistributionNamed(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for JointDistributionNamed.

See JointDistributionNamed for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct the JointDistributionNamed distribution.

	Parameters

	
	model – Python dict or namedtuple of distribution-making functions each
with required args corresponding only to other keys.

	validate_args – Python bool. Whether to validate input with asserts.
If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.
Default value: False.

	name – The name for ops managed by the distribution.
Default value: None (i.e., “JointDistributionNamed”).

	
inferpy.models.JointDistributionSequential(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for JointDistributionSequential.

See JointDistributionSequential for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct the JointDistributionSequential distribution.

	Parameters

	
	model – Python list of either tfd.Distribution instances and/or
lambda functions which take the k previous distributions and returns a
new tfd.Distribution instance.

	validate_args – Python bool. Whether to validate input with asserts.
If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.
Default value: False.

	name – The name for ops managed by the distribution.
Default value: None (i.e., “JointDistributionSequential”).

	
inferpy.models.Kumaraswamy(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Kumaraswamy.

See Kumaraswamy for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Kumaraswamy distributions.

	Parameters

	
	concentration1 – Positive floating-point Tensor indicating mean
number of successes; aka “alpha”. Implies self.dtype and
self.batch_shape, i.e.,
concentration1.shape = [N1, N2, …, Nm] = self.batch_shape.

	concentration0 – Positive floating-point Tensor indicating mean
number of failures; aka “beta”. Otherwise has same semantics as
concentration1.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.Laplace(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Laplace.

See Laplace for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Laplace distribution with parameters loc and scale.

The parameters loc and scale must be shaped in a way that supports
broadcasting (e.g., loc / scale is a valid operation).

	Parameters

	
	loc – Floating point tensor which characterizes the location (center)
of the distribution.

	scale – Positive floating point tensor which characterizes the spread of
the distribution.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if loc and scale are of different dtype.

	
inferpy.models.LinearGaussianStateSpaceModel(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for LinearGaussianStateSpaceModel.

See LinearGaussianStateSpaceModel for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a `LinearGaussianStateSpaceModel.

	Parameters

	
	num_timesteps – Integer Tensor total number of timesteps.

	transition_matrix – A transition operator, represented by a Tensor or
LinearOperator of shape [latent_size, latent_size], or by a
callable taking as argument a scalar integer Tensor t and
returning a Tensor or LinearOperator representing the transition
operator from latent state at time t to time t + 1.

	transition_noise – An instance of
tfd.MultivariateNormalLinearOperator with event shape
[latent_size], representing the mean and covariance of the
transition noise model, or a callable taking as argument a
scalar integer Tensor t and returning such a distribution
representing the noise in the transition from time t to time t + 1.

	observation_matrix – An observation operator, represented by a Tensor
or LinearOperator of shape [observation_size, latent_size],
or by a callable taking as argument a scalar integer Tensor
t and returning a timestep-specific Tensor or
LinearOperator.

	observation_noise – An instance of
tfd.MultivariateNormalLinearOperator with event shape
[observation_size], representing the mean and covariance of
the observation noise model, or a callable taking as argument
a scalar integer Tensor t and returning a timestep-specific
noise model.

	initial_state_prior – An instance of MultivariateNormalLinearOperator
representing the prior distribution on latent states; must
have event shape [latent_size].

	initial_step – optional int specifying the time of the first
modeled timestep. This is added as an offset when passing
timesteps t to (optional) callables specifying
timestep-specific transition and observation models.

	validate_args – Python bool, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are
invalid, correct behavior is not guaranteed.

	allow_nan_stats – Python bool, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc…) is undefined for any
batch member If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

	name – The name to give Ops created by the initializer.

	
inferpy.models.LKJ(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for LKJ.

See LKJ for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct LKJ distributions.

	Parameters

	
	dimension – Python int. The dimension of the correlation matrices
to sample.

	concentration – float or double Tensor. The positive concentration
parameter of the LKJ distributions. The pdf of a sample matrix X is
proportional to det(X) ** (concentration - 1).

	input_output_cholesky – Python bool. If True, functions whose input or
output have the semantics of samples assume inputs are in Cholesky form
and return outputs in Cholesky form. In particular, if this flag is
True, input to log_prob is presumed of Cholesky form and output from
sample is of Cholesky form. Setting this argument to True is purely
a computational optimization and does not change the underlying
distribution. Additionally, validation checks which are only defined on
the multiplied-out form are omitted, even if validate_args is True.
Default value: False (i.e., input/output does not have Cholesky
semantics).

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value NaN to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – If dimension is negative.

	
inferpy.models.Logistic(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Logistic.

See Logistic for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Logistic distributions with mean and scale loc and scale.

The parameters loc and scale must be shaped in a way that supports
broadcasting (e.g. loc + scale is a valid operation).

	Parameters

	
	loc – Floating point tensor, the means of the distribution(s).

	scale – Floating point tensor, the scales of the distribution(s). Must
contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – The name to give Ops created by the initializer.

	Raises

	TypeError – if loc and scale are different dtypes.

	
inferpy.models.LogNormal(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for LogNormal.

See LogNormal for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a log-normal distribution.

The LogNormal distribution models positive-valued random variables
whose logarithm is normally distributed with mean loc and
standard deviation scale. It is constructed as the exponential
transformation of a Normal distribution.

	Parameters

	
	loc – Floating-point Tensor; the means of the underlying
Normal distribution(s).

	scale – Floating-point Tensor; the stddevs of the underlying
Normal distribution(s).

	validate_args – Python bool, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are
invalid, correct behavior is not guaranteed.

	allow_nan_stats – Python bool, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc…) is undefined for any
batch member If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

	name – The name to give Ops created by the initializer.

	
inferpy.models.Multinomial(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Multinomial.

See Multinomial for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Multinomial distributions.

	Parameters

	
	total_count – Non-negative floating point tensor with shape broadcastable
to [N1,…, Nm] with m >= 0. Defines this as a batch of
N1 x … x Nm different Multinomial distributions. Its components
should be equal to integer values.

	logits – Floating point tensor representing unnormalized log-probabilities
of a positive event with shape broadcastable to
[N1,…, Nm, K] m >= 0, and the same dtype as total_count. Defines
this as a batch of N1 x … x Nm different K class Multinomial
distributions. Only one of logits or probs should be passed in.

	probs – Positive floating point tensor with shape broadcastable to
[N1,…, Nm, K] m >= 0 and same dtype as total_count. Defines
this as a batch of N1 x … x Nm different K class Multinomial
distributions. probs’s components in the last portion of its shape
should sum to 1. Only one of logits or probs should be passed in.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.MultivariateStudentTLinearOperator(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateStudentTLinearOperator.

See MultivariateStudentTLinearOperator for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Multivariate Student’s t-distribution on R^k.

The batch_shape is the broadcast shape between df, loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc must broadcast with this.

Additional leading dimensions (if any) will index batches.

	Parameters

	
	df – A positive floating-point Tensor. Has shape [B1, …, Bb] where b
>= 0.

	loc – Floating-point Tensor. Has shape [B1, …, Bb, k] where k is
the event size.

	scale – Instance of LinearOperator with a floating dtype and shape
[B1, …, Bb, k, k].

	validate_args – Python bool, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.

	allow_nan_stats – Python bool, default True. If False, raise an
exception if a statistic (e.g. mean/variance/etc…) is undefined for
any batch member If True, batch members with valid parameters leading
to undefined statistics will return NaN for this statistic.

	name – The name to give Ops created by the initializer.

	Raises

	
	TypeError – if not scale.dtype.is_floating.

	ValueError – if not scale.is_positive_definite.

	
inferpy.models.MultivariateNormalDiag(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalDiag.

See MultivariateNormalDiag for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc (if provided) must broadcast with this.

Recall that covariance = scale @ scale.T. A (non-batch) scale matrix is:

`none
scale = diag(scale_diag + scale_identity_multiplier * ones(k))
`

where:

	scale_diag.shape = [k], and,

	scale_identity_multiplier.shape = [].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then
scale is the Identity matrix.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	scale_diag – Non-zero, floating-point Tensor representing a diagonal
matrix added to scale. May have shape [B1, …, Bb, k], b >= 0,
and characterizes b-batches of k x k diagonal matrices added to
scale. When both scale_identity_multiplier and scale_diag are
None then scale is the Identity.

	scale_identity_multiplier – Non-zero, floating-point Tensor representing
a scaled-identity-matrix added to scale. May have shape
[B1, …, Bb], b >= 0, and characterizes b-batches of scaled
k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is
the Identity.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if at most scale_identity_multiplier is specified.

	
inferpy.models.MultivariateNormalDiagWithSoftplusScale(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalDiagWithSoftplusScale.

See MultivariateNormalDiagWithSoftplusScale for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2019-06-05.
Instructions for updating:
MultivariateNormalDiagWithSoftplusScale is deprecated, use MultivariateNormalDiag(loc=loc, scale_diag=tf.nn.softplus(scale_diag)) instead.

	
inferpy.models.MultivariateNormalDiagPlusLowRank(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalDiagPlusLowRank.

See MultivariateNormalDiagPlusLowRank for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc (if provided) must broadcast with this.

Recall that covariance = scale @ scale.T. A (non-batch) scale matrix is:

```none
scale = diag(scale_diag + scale_identity_multiplier ones(k)) +


scale_perturb_factor @ diag(scale_perturb_diag) @ scale_perturb_factor.T




```

where:

	scale_diag.shape = [k],

	scale_identity_multiplier.shape = [],

	scale_perturb_factor.shape = [k, r], typically k >> r, and,

	scale_perturb_diag.shape = [r].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then
scale is the Identity matrix.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	scale_diag – Non-zero, floating-point Tensor representing a diagonal
matrix added to scale. May have shape [B1, …, Bb, k], b >= 0,
and characterizes b-batches of k x k diagonal matrices added to
scale. When both scale_identity_multiplier and scale_diag are
None then scale is the Identity.

	scale_identity_multiplier – Non-zero, floating-point Tensor representing
a scaled-identity-matrix added to scale. May have shape
[B1, …, Bb], b >= 0, and characterizes b-batches of scaled
k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is
the Identity.

	scale_perturb_factor – Floating-point Tensor representing a rank-r
perturbation added to scale. May have shape [B1, …, Bb, k, r],
b >= 0, and characterizes b-batches of rank-r updates to scale.
When None, no rank-r update is added to scale.

	scale_perturb_diag – Floating-point Tensor representing a diagonal matrix
inside the rank-r perturbation added to scale. May have shape
[B1, …, Bb, r], b >= 0, and characterizes b-batches of r x r
diagonal matrices inside the perturbation added to scale. When
None, an identity matrix is used inside the perturbation. Can only be
specified if scale_perturb_factor is also specified.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if at most scale_identity_multiplier is specified.

	
inferpy.models.MultivariateNormalFullCovariance(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalFullCovariance.

See MultivariateNormalFullCovariance for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and
covariance_matrix arguments.

The event_shape is given by last dimension of the matrix implied by
covariance_matrix. The last dimension of loc (if provided) must
broadcast with this.

A non-batch covariance_matrix matrix is a k x k symmetric positive
definite matrix. In other words it is (real) symmetric with all eigenvalues
strictly positive.

Additional leading dimensions (if any) will index batches.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	covariance_matrix – Floating-point, symmetric positive definite Tensor of
same dtype as loc. The strict upper triangle of covariance_matrix
is ignored, so if covariance_matrix is not symmetric no error will be
raised (unless validate_args is True). covariance_matrix has shape
[B1, …, Bb, k, k] where b >= 0 and k is the event size.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if neither loc nor covariance_matrix are specified.

	
inferpy.models.MultivariateNormalLinearOperator(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalLinearOperator.

See MultivariateNormalLinearOperator for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc (if provided) must broadcast with this.

Recall that covariance = scale @ scale.T.

Additional leading dimensions (if any) will index batches.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	scale – Instance of LinearOperator with same dtype as loc and shape
[B1, …, Bb, k, k].

	validate_args – Python bool, default False. Whether to validate input
with asserts. If validate_args is False, and the inputs are
invalid, correct behavior is not guaranteed.

	allow_nan_stats – Python bool, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc…) is undefined for any
batch member If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

	name – The name to give Ops created by the initializer.

	Raises

	
	ValueError – if scale is unspecified.

	TypeError – if not scale.dtype.is_floating

	
inferpy.models.MultivariateNormalTriL(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for MultivariateNormalTriL.

See MultivariateNormalTriL for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Multivariate Normal distribution on R^k.

The batch_shape is the broadcast shape between loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc (if provided) must broadcast with this.

Recall that covariance = scale @ scale.T. A (non-batch) scale matrix is:

`none
scale = scale_tril
`

where scale_tril is lower-triangular k x k matrix with non-zero
diagonal, i.e., tf.diag_part(scale_tril) != 0.

Additional leading dimensions (if any) will index batches.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	scale_tril – Floating-point, lower-triangular Tensor with non-zero
diagonal elements. scale_tril has shape [B1, …, Bb, k, k] where
b >= 0 and k is the event size.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if neither loc nor scale_tril are specified.

	
inferpy.models.NegativeBinomial(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for NegativeBinomial.

See NegativeBinomial for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct NegativeBinomial distributions.

	Parameters

	
	total_count – Non-negative floating-point Tensor with shape
broadcastable to [B1,…, Bb] with b >= 0 and the same dtype as
probs or logits. Defines this as a batch of N1 x … x Nm
different Negative Binomial distributions. In practice, this represents
the number of negative Bernoulli trials to stop at (the total_count
of failures), but this is still a valid distribution when
total_count is a non-integer.

	logits – Floating-point Tensor with shape broadcastable to
[B1, …, Bb] where b >= 0 indicates the number of batch dimensions.
Each entry represents logits for the probability of success for
independent Negative Binomial distributions and must be in the open
interval (-inf, inf). Only one of logits or probs should be
specified.

	probs – Positive floating-point Tensor with shape broadcastable to
[B1, …, Bb] where b >= 0 indicates the number of batch dimensions.
Each entry represents the probability of success for independent
Negative Binomial distributions and must be in the open interval
(0, 1). Only one of logits or probs should be specified.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.Normal(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Normal.

See Normal for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Normal distributions with mean and stddev loc and scale.

The parameters loc and scale must be shaped in a way that supports
broadcasting (e.g. loc + scale is a valid operation).

	Parameters

	
	loc – Floating point tensor; the means of the distribution(s).

	scale – Floating point tensor; the stddevs of the distribution(s).
Must contain only positive values.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if loc and scale have different dtype.

	
inferpy.models.OneHotCategorical(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for OneHotCategorical.

See OneHotCategorical for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize OneHotCategorical distributions using class log-probabilities.

	Parameters

	
	logits – An N-D Tensor, N >= 1, representing the log probabilities of a
set of Categorical distributions. The first N - 1 dimensions index
into a batch of independent distributions and the last dimension
represents a vector of logits for each class. Only one of logits or
probs should be passed in.

	probs – An N-D Tensor, N >= 1, representing the probabilities of a set
of Categorical distributions. The first N - 1 dimensions index into a
batch of independent distributions and the last dimension represents a
vector of probabilities for each class. Only one of logits or probs
should be passed in.

	dtype – The type of the event samples (default: int32).

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.Pareto(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Pareto.

See Pareto for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Pareto distribution with concentration and scale.

	Parameters

	
	concentration – Floating point tensor. Must contain only positive values.

	scale – Floating point tensor, equivalent to mode. scale also
restricts the domain of this distribution to be in [scale, inf).
Must contain only positive values. Default value: 1.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs. Default value: False (i.e. do not validate args).

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘Pareto’.

	
inferpy.models.Poisson(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Poisson.

See Poisson for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Poisson distributions.

	Parameters

	
	rate – Floating point tensor, the rate parameter. rate must be positive.
Must specify exactly one of rate and log_rate.

	log_rate – Floating point tensor, the log of the rate parameter.
Must specify exactly one of rate and log_rate.

	interpolate_nondiscrete – Python bool. When False,
log_prob returns -inf (and prob returns 0) for non-integer
inputs. When True, log_prob evaluates the continuous function
k * log_rate - lgamma(k+1) - rate, which matches the Poisson pmf
at integer arguments k (note that this function is not itself
a normalized probability log-density).
Default value: True.

	validate_args – Python bool. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.

	Raises

	
	ValueError – if none or both of rate, log_rate are specified.

	TypeError – if rate is not a float-type.

	TypeError – if log_rate is not a float-type.

	
inferpy.models.PoissonLogNormalQuadratureCompound(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for PoissonLogNormalQuadratureCompound.

See PoissonLogNormalQuadratureCompound for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Constructs the PoissonLogNormalQuadratureCompound`.

Note: probs returned by (optional) quadrature_fn are presumed to be
either a length-quadrature_size vector or a batch of vectors in 1-to-1
correspondence with the returned grid. (I.e., broadcasting is only
partially supported.)

	Parameters

	
	loc – float-like (batch of) scalar Tensor; the location parameter of
the LogNormal prior.

	scale – float-like (batch of) scalar Tensor; the scale parameter of
the LogNormal prior.

	quadrature_size – Python int scalar representing the number of quadrature
points.

	quadrature_fn – Python callable taking loc, scale,
quadrature_size, validate_args and returning tuple(grid, probs)
representing the LogNormal grid and corresponding normalized weight.
normalized) weight.
Default value: quadrature_scheme_lognormal_quantiles.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if quadrature_grid and quadrature_probs have different base
dtype.

	
inferpy.models.QuantizedDistribution(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for QuantizedDistribution.

See QuantizedDistribution for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a Quantized Distribution representing Y = ceiling(X).

Some properties are inherited from the distribution defining X. Example:
allow_nan_stats is determined for this QuantizedDistribution by reading
the distribution.

	Parameters

	
	distribution – The base distribution class to transform. Typically an
instance of Distribution.

	low – Tensor with same dtype as this distribution and shape
able to be added to samples. Should be a whole number. Default None.
If provided, base distribution’s prob should be defined at
low.

	high – Tensor with same dtype as this distribution and shape
able to be added to samples. Should be a whole number. Default None.
If provided, base distribution’s prob should be defined at
high - 1.
high must be strictly greater than low.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	name – Python str name prefixed to Ops created by this class.

	Raises

	
	TypeError – If dist_cls is not a subclass of
Distribution or continuous.

	NotImplementedError – If the base distribution does not implement cdf.

	
inferpy.models.RelaxedBernoulli(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for RelaxedBernoulli.

See RelaxedBernoulli for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct RelaxedBernoulli distributions.

	Parameters

	
	temperature – An 0-D Tensor, representing the temperature
of a set of RelaxedBernoulli distributions. The temperature should be
positive.

	logits – An N-D Tensor representing the log-odds
of a positive event. Each entry in the Tensor parametrizes
an independent RelaxedBernoulli distribution where the probability of an
event is sigmoid(logits). Only one of logits or probs should be
passed in.

	probs – An N-D Tensor representing the probability of a positive event.
Each entry in the Tensor parameterizes an independent Bernoulli
distribution. Only one of logits or probs should be passed in.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – If both probs and logits are passed, or if neither.

	
inferpy.models.ExpRelaxedOneHotCategorical(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for ExpRelaxedOneHotCategorical.

See ExpRelaxedOneHotCategorical for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize ExpRelaxedOneHotCategorical using class log-probabilities.

	Parameters

	
	temperature – An 0-D Tensor, representing the temperature
of a set of ExpRelaxedCategorical distributions. The temperature should
be positive.

	logits – An N-D Tensor, N >= 1, representing the log probabilities
of a set of ExpRelaxedCategorical distributions. The first
N - 1 dimensions index into a batch of independent distributions and
the last dimension represents a vector of logits for each class. Only
one of logits or probs should be passed in.

	probs – An N-D Tensor, N >= 1, representing the probabilities
of a set of ExpRelaxedCategorical distributions. The first
N - 1 dimensions index into a batch of independent distributions and
the last dimension represents a vector of probabilities for each
class. Only one of logits or probs should be passed in.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.RelaxedOneHotCategorical(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for RelaxedOneHotCategorical.

See RelaxedOneHotCategorical for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize RelaxedOneHotCategorical using class log-probabilities.

	Parameters

	
	temperature – An 0-D Tensor, representing the temperature
of a set of RelaxedOneHotCategorical distributions. The temperature
should be positive.

	logits – An N-D Tensor, N >= 1, representing the log probabilities
of a set of RelaxedOneHotCategorical distributions. The first
N - 1 dimensions index into a batch of independent distributions and
the last dimension represents a vector of logits for each class. Only
one of logits or probs should be passed in.

	probs – An N-D Tensor, N >= 1, representing the probabilities
of a set of RelaxedOneHotCategorical distributions. The first N - 1
dimensions index into a batch of independent distributions and the last
dimension represents a vector of probabilities for each class. Only one
of logits or probs should be passed in.

	validate_args – Unused in this distribution.

	allow_nan_stats – Python bool, default True. If False, raise an
exception if a statistic (e.g. mean/mode/etc…) is undefined for any
batch member. If True, batch members with valid parameters leading to
undefined statistics will return NaN for this statistic.

	name – A name for this distribution (optional).

	
inferpy.models.Sample(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Sample.

See Sample for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct the Sample distribution.

	Parameters

	
	distribution – The base distribution instance to transform. Typically an
instance of Distribution.

	sample_shape – int scalar or vector Tensor representing the shape of a
single sample.

	validate_args – Python bool. Whether to validate input with asserts.
If validate_args is False, and the inputs are invalid,
correct behavior is not guaranteed.

	name – The name for ops managed by the distribution.
Default value: None (i.e., ‘Sample’ + distribution.name).

	
inferpy.models.SinhArcsinh(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for SinhArcsinh.

See SinhArcsinh for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct SinhArcsinh distribution on (-inf, inf).

Arguments (loc, scale, skewness, tailweight) must have broadcastable shape
(indexing batch dimensions). They must all have the same dtype.

	Parameters

	
	loc – Floating-point Tensor.

	scale – Tensor of same dtype as loc.

	skewness – Skewness parameter. Default is 0.0 (no skew).

	tailweight – Tailweight parameter. Default is 1.0 (unchanged tailweight)

	distribution – tf.Distribution-like instance. Distribution that is
transformed to produce this distribution.
Default is tfd.Normal(0., 1.).
Must be a scalar-batch, scalar-event distribution. Typically
distribution.reparameterization_type = FULLY_REPARAMETERIZED or it is
a function of non-trainable parameters. WARNING: If you backprop through
a SinhArcsinh sample and distribution is not
FULLY_REPARAMETERIZED yet is a function of trainable variables, then
the gradient will be incorrect!

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.StudentT(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for StudentT.

See StudentT for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Student’s t distributions.

The distributions have degree of freedom df, mean loc, and scale
scale.

The parameters df, loc, and scale must be shaped in a way that
supports broadcasting (e.g. df + loc + scale is a valid operation).

	Parameters

	
	df – Floating-point Tensor. The degrees of freedom of the
distribution(s). df must contain only positive values.

	loc – Floating-point Tensor. The mean(s) of the distribution(s).

	scale – Floating-point Tensor. The scaling factor(s) for the
distribution(s). Note that scale is not technically the standard
deviation of this distribution but has semantics more similar to
standard deviation than variance.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if loc and scale are different dtypes.

	
inferpy.models.StudentTProcess(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for StudentTProcess.

See StudentTProcess for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Instantiate a StudentTProcess Distribution.

	Parameters

	
	df – Positive Floating-point Tensor representing the degrees of freedom.
Must be greater than 2.

	kernel – PositiveSemidefiniteKernel-like instance representing the
TP’s covariance function.

	index_points – float Tensor representing finite (batch of) vector(s) of
points in the index set over which the TP is defined. Shape has the form
[b1, …, bB, e, f1, …, fF] where F is the number of feature
dimensions and must equal kernel.feature_ndims and e is the number
(size) of index points in each batch. Ultimately this distribution
corresponds to a e-dimensional multivariate Student’s T. The batch
shape must be broadcastable with kernel.batch_shape and any batch dims
yielded by mean_fn.

	mean_fn – Python callable that acts on index_points to produce a (batch
of) vector(s) of mean values at index_points. Takes a Tensor of
shape [b1, …, bB, f1, …, fF] and returns a Tensor whose shape is
broadcastable with [b1, …, bB]. Default value: None implies
constant zero function.

	jitter – float scalar Tensor added to the diagonal of the covariance
matrix to ensure positive definiteness of the covariance matrix.
Default value: 1e-6.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.
Default value: False.

	name – Python str name prefixed to Ops created by this class.
Default value: “StudentTProcess”.

	Raises

	ValueError – if mean_fn is not None and is not callable.

	
inferpy.models.ConditionalTransformedDistribution(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for ConditionalTransformedDistribution.

See ConditionalTransformedDistribution for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a Transformed Distribution.

	Parameters

	
	distribution – The base distribution instance to transform. Typically an
instance of Distribution.

	bijector – The object responsible for calculating the transformation.
Typically an instance of Bijector.

	batch_shape – integer vector Tensor which overrides distribution
batch_shape; valid only if distribution.is_scalar_batch().

	event_shape – integer vector Tensor which overrides distribution
event_shape; valid only if distribution.is_scalar_event().

	kwargs_split_fn – Python callable which takes a kwargs dict and returns
a tuple of kwargs dict`s for each of the `distribution and bijector
parameters respectively.
Default value: _default_kwargs_split_fn (i.e.,

	`lambda kwargs: (kwargs.get(‘distribution_kwargs’, {}),
	kwargs.get(‘bijector_kwargs’, {}))`)

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	parameters – Locals dict captured by subclass constructor, to be used for
copy/slice re-instantiation operations.

	name – Python str name prefixed to Ops created by this class. Default:
bijector.name + distribution.name.

	
inferpy.models.TransformedDistribution(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for TransformedDistribution.

See TransformedDistribution for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct a Transformed Distribution.

	Parameters

	
	distribution – The base distribution instance to transform. Typically an
instance of Distribution.

	bijector – The object responsible for calculating the transformation.
Typically an instance of Bijector.

	batch_shape – integer vector Tensor which overrides distribution
batch_shape; valid only if distribution.is_scalar_batch().

	event_shape – integer vector Tensor which overrides distribution
event_shape; valid only if distribution.is_scalar_event().

	kwargs_split_fn – Python callable which takes a kwargs dict and returns
a tuple of kwargs dict`s for each of the `distribution and bijector
parameters respectively.
Default value: _default_kwargs_split_fn (i.e.,

	`lambda kwargs: (kwargs.get(‘distribution_kwargs’, {}),
	kwargs.get(‘bijector_kwargs’, {}))`)

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	parameters – Locals dict captured by subclass constructor, to be used for
copy/slice re-instantiation operations.

	name – Python str name prefixed to Ops created by this class. Default:
bijector.name + distribution.name.

	
inferpy.models.Triangular(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Triangular.

See Triangular for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Triangular distributions.

	Parameters

	
	low – Floating point tensor, lower boundary of the output interval. Must
have low < high.
Default value: 0.

	high – Floating point tensor, upper boundary of the output interval. Must
have low < high.
Default value: 1.

	peak – Floating point tensor, mode of the output interval. Must have
low <= peak and peak <= high.
Default value: 0.5.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.
Default value: True.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘Triangular’.

	Raises

	InvalidArgumentError – if validate_args=True and one of the following is
True:
* low >= high.
* peak > high.
* low > peak.

	
inferpy.models.TruncatedNormal(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for TruncatedNormal.

See TruncatedNormal for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct TruncatedNormal.

All parameters of the distribution will be broadcast to the same shape,
so the resulting distribution will have a batch_shape of the broadcast
shape of all parameters.

	Parameters

	
	loc – Floating point tensor; the mean of the normal distribution(s) (
note that the mean of the resulting distribution will be different
since it is modified by the bounds).

	scale – Floating point tensor; the std deviation of the normal
distribution(s).

	low – float Tensor representing lower bound of the distribution’s
support. Must be such that low < high.

	high – float Tensor representing upper bound of the distribution’s
support. Must be such that low < high.

	validate_args – Python bool, default False. When True distribution
parameters are checked at run-time.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	
inferpy.models.Uniform(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Uniform.

See Uniform for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Uniform distributions.

	Parameters

	
	low – Floating point tensor, lower boundary of the output interval. Must
have low < high.

	high – Floating point tensor, upper boundary of the output interval. Must
have low < high.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	InvalidArgumentError – if low >= high and validate_args=False.

	
inferpy.models.VariationalGaussianProcess(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VariationalGaussianProcess.

See VariationalGaussianProcess for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Instantiate a VariationalGaussianProcess Distribution.

	Parameters

	
	kernel – PositiveSemidefiniteKernel-like instance representing the
GP’s covariance function.

	index_points – float Tensor representing finite (batch of) vector(s) of
points in the index set over which the VGP is defined. Shape has the
form [b1, …, bB, e1, f1, …, fF] where F is the number of feature
dimensions and must equal kernel.feature_ndims and e1 is the number
(size) of index points in each batch (we denote it e1 to distinguish
it from the numer of inducing index points, denoted e2 below).
Ultimately the VariationalGaussianProcess distribution corresponds to an
e1-dimensional multivariate normal. The batch shape must be
broadcastable with kernel.batch_shape, the batch shape of
inducing_index_points, and any batch dims yielded by mean_fn.

	inducing_index_points – float Tensor of locations of inducing points in
the index set. Shape has the form [b1, …, bB, e2, f1, …, fF], just
like index_points. The batch shape components needn’t be identical to
those of index_points, but must be broadcast compatible with them.

	variational_inducing_observations_loc – float Tensor; the mean of the
(full-rank Gaussian) variational posterior over function values at the
inducing points, conditional on observed data. Shape has the form [b1,
…, bB, e2], where b1, …, bB is broadcast compatible with other
parameters’ batch shapes, and e2 is the number of inducing points.

	variational_inducing_observations_scale – float Tensor; the scale
matrix of the (full-rank Gaussian) variational posterior over function
values at the inducing points, conditional on observed data. Shape has
the form [b1, …, bB, e2, e2], where b1, …, bB is broadcast
compatible with other parameters and e2 is the number of inducing
points.

	mean_fn – Python callable that acts on index points to produce a (batch
of) vector(s) of mean values at those index points. Takes a Tensor of
shape [b1, …, bB, f1, …, fF] and returns a Tensor whose shape is
(broadcastable with) [b1, …, bB]. Default value: None implies
constant zero function.

	observation_noise_variance – float Tensor representing the variance
of the noise in the Normal likelihood distribution of the model. May be
batched, in which case the batch shape must be broadcastable with the
shapes of all other batched parameters (kernel.batch_shape,
index_points, etc.).
Default value: 0.

	predictive_noise_variance – float Tensor representing additional
variance in the posterior predictive model. If None, we simply re-use
observation_noise_variance for the posterior predictive noise. If set
explicitly, however, we use the given value. This allows us, for
example, to omit predictive noise variance (by setting this to zero) to
obtain noiseless posterior predictions of function values, conditioned
on noisy observations.

	jitter – float scalar Tensor added to the diagonal of the covariance
matrix to ensure positive definiteness of the covariance matrix.
Default value: 1e-6.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.
Default value: False.

	name – Python str name prefixed to Ops created by this class.
Default value: “VariationalGaussianProcess”.

	Raises

	ValueError – if mean_fn is not None and is not callable.

	
inferpy.models.VectorDiffeomixture(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorDiffeomixture.

See VectorDiffeomixture for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Constructs the VectorDiffeomixture on R^d.

The vector diffeomixture (VDM) approximates the compound distribution

`none
p(x) = int p(x | z) p(z) dz,
where z is in the K-simplex, and
p(x | z) := p(x | loc=sum_k z[k] loc[k], scale=sum_k z[k] scale[k])
`

	Parameters

	
	mix_loc – float-like Tensor with shape [b1, …, bB, K-1].
In terms of samples, larger mix_loc[…, k] ==>
Z is more likely to put more weight on its kth component.

	temperature – float-like Tensor. Broadcastable with mix_loc.
In terms of samples, smaller temperature means one component is more
likely to dominate. I.e., smaller temperature makes the VDM look more
like a standard mixture of K components.

	distribution – tfp.distributions.Distribution-like instance. Distribution
from which d iid samples are used as input to the selected affine
transformation. Must be a scalar-batch, scalar-event distribution.
Typically distribution.reparameterization_type = FULLY_REPARAMETERIZED
or it is a function of non-trainable parameters. WARNING: If you
backprop through a VectorDiffeomixture sample and the distribution
is not FULLY_REPARAMETERIZED yet is a function of trainable variables,
then the gradient will be incorrect!

	loc – Length-K list of float-type Tensor`s. The `k-th element
represents the shift used for the k-th affine transformation. If
the k-th item is None, loc is implicitly 0. When specified,
must have shape [B1, …, Bb, d] where b >= 0 and d is the event
size.

	scale – Length-K list of LinearOperator`s. Each should be
positive-definite and operate on a `d-dimensional vector space. The
k-th element represents the scale used for the k-th affine
transformation. LinearOperator`s must have shape `[B1, …, Bb, d, d],
b >= 0, i.e., characterizes b-batches of d x d matrices

	quadrature_size – Python int scalar representing number of
quadrature points. Larger quadrature_size means q_N(x) better
approximates p(x).

	quadrature_fn – Python callable taking normal_loc, normal_scale,
quadrature_size, validate_args and returning tuple(grid, probs)
representing the SoftmaxNormal grid and corresponding normalized weight.
normalized) weight.
Default value: quadrature_scheme_softmaxnormal_quantiles.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	
	ValueError – if not scale or len(scale) < 2.

	ValueError – if len(loc) != len(scale)

	ValueError – if quadrature_grid_and_probs is not None and
len(quadrature_grid_and_probs[0]) != len(quadrature_grid_and_probs[1])

	ValueError – if validate_args and any not scale.is_positive_definite.

	TypeError – if any scale.dtype != scale[0].dtype.

	TypeError – if any loc.dtype != scale[0].dtype.

	NotImplementedError – if len(scale) != 2.

	ValueError – if not distribution.is_scalar_batch.

	ValueError – if not distribution.is_scalar_event.

	
inferpy.models.VectorExponentialDiag(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorExponentialDiag.

See VectorExponentialDiag for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Vector Exponential distribution supported on a subset of R^k.

The batch_shape is the broadcast shape between loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc (if provided) must broadcast with this.

Recall that covariance = scale @ scale.T.

`none
scale = diag(scale_diag + scale_identity_multiplier * ones(k))
`

where:

	scale_diag.shape = [k], and,

	scale_identity_multiplier.shape = [].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then
scale is the Identity matrix.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	scale_diag – Non-zero, floating-point Tensor representing a diagonal
matrix added to scale. May have shape [B1, …, Bb, k], b >= 0,
and characterizes b-batches of k x k diagonal matrices added to
scale. When both scale_identity_multiplier and scale_diag are
None then scale is the Identity.

	scale_identity_multiplier – Non-zero, floating-point Tensor representing
a scaled-identity-matrix added to scale. May have shape
[B1, …, Bb], b >= 0, and characterizes b-batches of scaled
k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is
the Identity.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if at most scale_identity_multiplier is specified.

	
inferpy.models.VectorLaplaceDiag(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorLaplaceDiag.

See VectorLaplaceDiag for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Vector Laplace distribution on R^k.

The batch_shape is the broadcast shape between loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc (if provided) must broadcast with this.

Recall that covariance = 2 * scale @ scale.T.

`none
scale = diag(scale_diag + scale_identity_multiplier * ones(k))
`

where:

	scale_diag.shape = [k], and,

	scale_identity_multiplier.shape = [].

Additional leading dimensions (if any) will index batches.

If both scale_diag and scale_identity_multiplier are None, then
scale is the Identity matrix.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	scale_diag – Non-zero, floating-point Tensor representing a diagonal
matrix added to scale. May have shape [B1, …, Bb, k], b >= 0,
and characterizes b-batches of k x k diagonal matrices added to
scale. When both scale_identity_multiplier and scale_diag are
None then scale is the Identity.

	scale_identity_multiplier – Non-zero, floating-point Tensor representing
a scaled-identity-matrix added to scale. May have shape
[B1, …, Bb], b >= 0, and characterizes b-batches of scaled
k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale is
the Identity.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if at most scale_identity_multiplier is specified.

	
inferpy.models.VectorSinhArcsinhDiag(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VectorSinhArcsinhDiag.

See VectorSinhArcsinhDiag for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct VectorSinhArcsinhDiag distribution on R^k.

The arguments scale_diag and scale_identity_multiplier combine to
define the diagonal scale referred to in this class docstring:

`none
scale = diag(scale_diag + scale_identity_multiplier * ones(k))
`

The batch_shape is the broadcast shape between loc and scale
arguments.

The event_shape is given by last dimension of the matrix implied by
scale. The last dimension of loc (if provided) must broadcast with this

Additional leading dimensions (if any) will index batches.

	Parameters

	
	loc – Floating-point Tensor. If this is set to None, loc is
implicitly 0. When specified, may have shape [B1, …, Bb, k] where
b >= 0 and k is the event size.

	scale_diag – Non-zero, floating-point Tensor representing a diagonal
matrix added to scale. May have shape [B1, …, Bb, k], b >= 0,
and characterizes b-batches of k x k diagonal matrices added to
scale. When both scale_identity_multiplier and scale_diag are
None then scale is the Identity.

	scale_identity_multiplier – Non-zero, floating-point Tensor representing
a scale-identity-matrix added to scale. May have shape
[B1, …, Bb], b >= 0, and characterizes b-batches of scale
k x k identity matrices added to scale. When both
scale_identity_multiplier and scale_diag are None then scale
is the Identity.

	skewness – Skewness parameter. floating-point Tensor with shape
broadcastable with event_shape.

	tailweight – Tailweight parameter. floating-point Tensor with shape
broadcastable with event_shape.

	distribution – tf.Distribution-like instance. Distribution from which k
iid samples are used as input to transformation F. Default is
tfd.Normal(loc=0., scale=1.).
Must be a scalar-batch, scalar-event distribution. Typically
distribution.reparameterization_type = FULLY_REPARAMETERIZED or it is
a function of non-trainable parameters. WARNING: If you backprop through
a VectorSinhArcsinhDiag sample and distribution is not
FULLY_REPARAMETERIZED yet is a function of trainable variables, then
the gradient will be incorrect!

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if at most scale_identity_multiplier is specified.

	
inferpy.models.VonMises(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VonMises.

See VonMises for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct von Mises distributions with given location and concentration.

The parameters loc and concentration must be shaped in a way that
supports broadcasting (e.g. loc + concentration is a valid operation).

	Parameters

	
	loc – Floating point tensor, the circular means of the distribution(s).

	concentration – Floating point tensor, the level of concentration of the
distribution(s) around loc. Must take non-negative values.
concentration = 0 defines a Uniform distribution, while
concentration = +inf indicates a Deterministic distribution at loc.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or more
of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	TypeError – if loc and concentration are different dtypes.

	
inferpy.models.VonMisesFisher(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for VonMisesFisher.

See VonMisesFisher for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Creates a new VonMisesFisher instance.

	Parameters

	
	mean_direction – Floating-point Tensor with shape [B1, … Bn, D].
A unit vector indicating the mode of the distribution, or the
unit-normalized direction of the mean. (This is not in general the
mean of the distribution; the mean is not generally in the support of
the distribution.) NOTE: D is currently restricted to <= 5.

	concentration – Floating-point Tensor having batch shape [B1, … Bn]
broadcastable with mean_direction. The level of concentration of
samples around the mean_direction. concentration=0 indicates a
uniform distribution over the unit hypersphere, and concentration=+inf
indicates a Deterministic distribution (delta function) at
mean_direction.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True,
statistics (e.g., mean, mode, variance) use the value “NaN” to
indicate the result is undefined. When False, an exception is raised
if one or more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – For known-bad arguments, i.e. unsupported event dimension.

	
inferpy.models.Wishart(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Wishart.

See Wishart for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Construct Wishart distributions.

	Parameters

	
	df – float or double Tensor. Degrees of freedom, must be greater than
or equal to dimension of the scale matrix.

	scale – float or double Tensor. The symmetric positive definite
scale matrix of the distribution. Exactly one of scale and
‘scale_tril` must be passed.

	scale_tril – float or double Tensor. The Cholesky factorization
of the symmetric positive definite scale matrix of the distribution.
Exactly one of scale and ‘scale_tril` must be passed.

	input_output_cholesky – Python bool. If True, functions whose input or
output have the semantics of samples assume inputs are in Cholesky form
and return outputs in Cholesky form. In particular, if this flag is
True, input to log_prob is presumed of Cholesky form and output from
sample, mean, and mode are of Cholesky form. Setting this
argument to True is purely a computational optimization and does not
change the underlying distribution; for instance, mean returns the
Cholesky of the mean, not the mean of Cholesky factors. The variance
and stddev methods are unaffected by this flag.
Default value: False (i.e., input/output does not have Cholesky
semantics).

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or
more of the statistic’s batch members are undefined.

	name – Python str name prefixed to Ops created by this class.

	Raises

	ValueError – if zero or both of ‘scale’ and ‘scale_tril’ are passed in.

	
inferpy.models.Zipf(*args, **kwargs)

	

Class for random variables. It encapsulates the Random Variable from edward2, and additional properties.

	It creates a variable generator. It must be a function without parameters, that creates a
new Random Variable from edward2. It is used to define edward2 models as functions.
Also, it is useful to define models using the intercept function.

	The first time the var property is used, it creates a var using the variable generator.

Random Variable information:

Create a random variable for Zipf.

See Zipf for more details.

	Returns

	RandomVariable.

Original Docstring for Distribution

Initialize a batch of Zipf distributions.

	Parameters

	
	power – Float like Tensor representing the power parameter. Must be
strictly greater than 1.

	dtype – The dtype of Tensor returned by sample.
Default value: tf.int32.

	interpolate_nondiscrete – Python bool. When False, log_prob returns
-inf (and prob returns 0) for non-integer inputs. When True,
log_prob evaluates the continuous function -power log(k) -
log(zeta(power)) , which matches the Zipf pmf at integer arguments k
(note that this function is not itself a normalized probability
log-density).
Default value: True.

	sample_maximum_iterations – Maximum number of iterations of allowable
iterations in sample. When validate_args=True, samples which fail to
reach convergence (subject to this cap) are masked out with
self.dtype.min or nan depending on self.dtype.is_integer.
Default value: 100.

	validate_args – Python bool, default False. When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
Default value: False.

	allow_nan_stats – Python bool, default True. When True, statistics
(e.g., mean, mode, variance) use the value “NaN” to indicate the
result is undefined. When False, an exception is raised if one or more
of the statistic’s batch members are undefined.
Default value: False.

	name – Python str name prefixed to Ops created by this class.
Default value: ‘Zipf’.

	Raises

	TypeError – if power is not float like.

	
inferpy.models.MixtureGaussian(locs, scales, logits=None, probs=None, *args, **kwargs)

	

inferpy.queries package

Submodules

inferpy.queries.query module

	
class inferpy.queries.query.Query(variables, target_names=None, data={}, enable_interceptor_variables=(None, None))

	Bases: object

	
log_prob()

	Computes the log probabilities of a (set of) sample(s)

	
parameters(names=None)

	Return the parameters of the Random Variables of the model.
If names is None, then return all the parameters of all the Random Variables.
If names is a list, then return the parameters specified in the list (if exists) for all the Random Variables.
If names is a dict, then return all the parameters specified (value) for each Random Variable (key).

Note

If tf_run=True, but any of the returned parameters is not a Tensor and therefore cannot be evaluated)
this returns a not evaluated dict (because the evaluation will raise an Exception)

	Parameters

	names – A list, a dict or None. Specify the parameters for the Random Variables to be obtained.

	Returns

	A dict, where the keys are the names of the Random Variables and the values a dict of parameters (name-value)

	
sample(size=1)

	Generates a sample for eache variable in the model

	
sum_log_prob()

	Computes the sum of the log probabilities (evaluated) of a (set of) sample(s)

	
inferpy.queries.query.flatten_result(f)

	

Module contents

	
class inferpy.queries.Query(variables, target_names=None, data={}, enable_interceptor_variables=(None, None))

	Bases: object

	
log_prob()

	Computes the log probabilities of a (set of) sample(s)

	
parameters(names=None)

	Return the parameters of the Random Variables of the model.
If names is None, then return all the parameters of all the Random Variables.
If names is a list, then return the parameters specified in the list (if exists) for all the Random Variables.
If names is a dict, then return all the parameters specified (value) for each Random Variable (key).

Note

If tf_run=True, but any of the returned parameters is not a Tensor and therefore cannot be evaluated)
this returns a not evaluated dict (because the evaluation will raise an Exception)

	Parameters

	names – A list, a dict or None. Specify the parameters for the Random Variables to be obtained.

	Returns

	A dict, where the keys are the names of the Random Variables and the values a dict of parameters (name-value)

	
sample(size=1)

	Generates a sample for eache variable in the model

	
sum_log_prob()

	Computes the sum of the log probabilities (evaluated) of a (set of) sample(s)

inferpy.util package

Submodules

inferpy.util.common module

Obtained from Keras GitHub repository: https://github.com/keras-team/keras/blob/master/keras/backend/common.py

	
inferpy.util.common.floatx()

	Returns the default float type, as a string. (e.g. float16, float32, float64).

	Returns

	the current default float type.

	Return type

	String

Example

>>> inf.floatx()
'float32'

	
inferpy.util.common.is_float(dtype)

	

	
inferpy.util.common.set_floatx(floatx)

	Sets the default float type.

	Parameters

	floatx – String, ‘float16’, ‘float32’, or ‘float64’.

Example

>>> from keras import backend as K
>>> inf.floatx()
'float32'
>>> inf.set_floatx('float16')
>>> inf..floatx()
'float16'

inferpy.util.interceptor module

	
inferpy.util.interceptor.disallow_conditions()

	

	
inferpy.util.interceptor.enable_interceptor(enable_globals, enable_locals)

	

	
inferpy.util.interceptor.make_predictable_variables(initial_value, rv_name)

	

	
inferpy.util.interceptor.set_values(**model_kwargs)

	Creates a value-setting interceptor. Usable as a parameter of the ed2.interceptor.

	Model_kwargs

	The name of each argument must be the name of a random variable to intercept,
and the value is the element which intercepts the value of the random variable.

	Returns

	The random variable with the intercepted value

	
inferpy.util.interceptor.set_values_condition(var_condition, var_value)

	Creates a value-setting interceptor. Usable as a parameter of the ed2.interceptor.

	Var_condition (tf.Variable)tf.Variable)

	The boolean tf.Variable, used to intercept the value property with
value_var or the variable value property itself

	Var_value (tf.Variable)tf.Variable)

	The tf.Variable used to intercept the value property when var_condition is True

	Returns

	The random variable with the intercepted value

inferpy.util.iterables module

	
inferpy.util.iterables.get_plate_size(variables, sample_dict)

	

	
inferpy.util.iterables.get_shape(x)

	Get the shape of an element x. If it is an element with a shape attribute, return it. If it is a list with more than
one element, compute the shape by checking the len, and the shape of internal elements. In that case, the shape must
be consistent. Finally, in other case return () as shape.

	Parameters

	x – The element to compute its shape

	Raises

	class `ValueError` – list shape not consistent

	Returns

	A tuple with the shape of x

inferpy.util.name module

	
inferpy.util.name.generate(prefix)

	This function is used to generate names based on an incremental counter (global variable in this module)
dependent on the prefix (staring from 0 index)

	Prefix (str)str)

	The begining of the random generated name

	Returns

	The generated random name

inferpy.util.runtime module

Module focused on evaluating tensors to makes the usage easier, forgetting about tensors and sessions

	
inferpy.util.runtime.runner_scope()

	

	
inferpy.util.runtime.set_tf_run(enable)

	

	
inferpy.util.runtime.tf_run_allowed(f)

	A function might return a tensor or not. In order to decide if the result of this function needs to be evaluated
in a tf session or not, use the tf_run extra parameter or the tf_run_default value. If True, and this function is
in the first level of execution depth, use a tf Session to evaluate the tensor or other evaluable object (like dicts)

	
inferpy.util.runtime.tf_run_ignored(f)

	A function might call other functions decorated with tf_run_allowed.
This decorator is used to avoid that such functions are evaluated.

	
inferpy.util.runtime.try_run(obj)

	

inferpy.util.session module

	
inferpy.util.session.clear_session()

	

	
inferpy.util.session.get_session()

	

	
inferpy.util.session.init_uninit_vars()

	

	
inferpy.util.session.new_session(gpu_memory_fraction=0.0)

	

	
inferpy.util.session.set_session(session)

	

	
inferpy.util.session.swap_session(new_session)

	

inferpy.util.startup module

inferpy.util.tf_graph module

	
inferpy.util.tf_graph.get_empty_graph()

	

	
inferpy.util.tf_graph.get_graph(varnames)

	

Module contents

Package with modules defining functions, classes and variables which are
useful for the main functionality provided by inferpy

	
inferpy.util.floatx()

	Returns the default float type, as a string. (e.g. float16, float32, float64).

	Returns

	the current default float type.

	Return type

	String

Example

>>> inf.floatx()
'float32'

	
inferpy.util.set_floatx(floatx)

	Sets the default float type.

	Parameters

	floatx – String, ‘float16’, ‘float32’, or ‘float64’.

Example

>>> from keras import backend as K
>>> inf.floatx()
'float32'
>>> inf.set_floatx('float16')
>>> inf..floatx()
'float16'

	
inferpy.util.set_tf_run(enable)

	

	
inferpy.util.tf_run_allowed(f)

	A function might return a tensor or not. In order to decide if the result of this function needs to be evaluated
in a tf session or not, use the tf_run extra parameter or the tf_run_default value. If True, and this function is
in the first level of execution depth, use a tf Session to evaluate the tensor or other evaluable object (like dicts)

	
inferpy.util.tf_run_ignored(f)

	A function might call other functions decorated with tf_run_allowed.
This decorator is used to avoid that such functions are evaluated.

	
inferpy.util.get_session()

	

	
inferpy.util.set_session(session)

	

	
inferpy.util.clear_session()

	

	
inferpy.util.new_session(gpu_memory_fraction=0.0)

	

	
inferpy.util.init_uninit_vars()

	

inferpy package

inferpy

	inferpy package

Acknowledgements

Authors have been jointly supported by the Spanish Ministry of Science and Innovation and by the FEDER under the projects TIN2015-74368-JIN, TIN2016-77902-C3-3-P, PID2019-106758GB-C31 and C32.

Guide to Advanced Setup

Using GPUs with InferPy

InferPy offers a method, called new_session(gpu_memory_fraction),
that creates a new TensorFlow session. The argument
gpu_memory_fraction is a float number between 0 and 1, that
specifies the percentage of GPU memory to use. If this argument is set
to 0 (default behavior), then only the CPU is used. Otherwise, the GPU
is configured to be used for the new default session.

import inferpy as inf

The `new_session` function must be called firstly, so every tensor is
registered in the correct graph and session.

inf.new_session(1.0) # use the 100% of the GPU memory for the computations

Dependencies

Note that your environment must be configured to use the GPU correctly. The InferPy
package offers an extra requirement option to install the GPU dependencies. However,
bear in mind that you must install the non-python dependencies by yourself. For more
details see the link TensorFlow-GPU [https://www.tensorflow.org/install/gpu].
To use the extra requirements option in InferPy just use the keyword gpu:

pip install inferpy[gpu]

Configure default float type

Just like in Keras [https://www.tensorflow.org/api_docs/python/tf/keras/backend/floatx], InferPy allows
to specify the default float type: e.g. float16, float32, float64.

The function set_floatx(value) sets the default float type to value, being one of the previously described
three options. The effect is that in the creation of Random Variables, the arguments are cast to the default
float type if they are of float type.

Additionally, the function floatx() can be used to check which default float type is being used.

by default, the float type is float32
import inferpy as inf
import numpy as np

print(inf.floatx())
print(inf.Normal(np.zeros(5), 1.).dtype) # float32

change the default float type to float64
inf.set_floatx('float64')
print(inf.floatx())
print(inf.Normal(np.zeros(5), 1.).dtype) # float64

Bayesian Neural Networks

Neural networks are powerful approximators. However, standard approaches
for learning this approximators does not take into account the inherent
uncertainty we may have when fitting a model.

import logging, os
logging.disable(logging.WARNING)
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import math
import inferpy as inf
import tensorflow_probability as tfp

Data

We use some fake data. As neural nets of even one hidden layer can be
universal function approximators, we can see if we can train a simple
neural network to fit a noisy sinusoidal data, like this:

NSAMPLE = 100
x_train = np.float32(np.random.uniform(-10.5, 10.5, (1, NSAMPLE))).T
r_train = np.float32(np.random.normal(size=(NSAMPLE,1),scale=1.0))
y_train = np.float32(np.sin(0.75*x_train)*7.0+x_train*0.5+r_train*1.0)

plt.figure(figsize=(8, 8))
plt.scatter(x_train, y_train, marker='+', label='Training data')
plt.legend();

[image: ../_images/output_3_0.png]

Learning Standard Neural Networks

We employ a simple feedforward network with 20 hidden units to learn the
model.

NHIDDEN = 20

nnetwork = tf.keras.Sequential([
 tf.keras.layers.Dense(NHIDDEN, activation=tf.nn.tanh),
 tf.keras.layers.Dense(1)
])

lossfunc = lambda y_out, y: tf.nn.l2_loss(y_out-y)

nnetwork.compile(tf.train.AdamOptimizer(0.01), lossfunc)
nnetwork.fit(x=x_train, y=y_train, epochs=1000)

Epoch 1/1000
100/100 [==============================] - 0s 2ms/sample - loss: 369.0472
Epoch 2/1000
100/100 [==============================] - 0s 110us/sample - loss: 333.4858
Epoch 3/1000
100/100 [==============================] - 0s 58us/sample - loss: 339.3102
 [...]
Epoch 997/1000
100/100 [==============================] - 0s 52us/sample - loss: 78.6340
Epoch 998/1000
100/100 [==============================] - 0s 50us/sample - loss: 78.3568
Epoch 999/1000
100/100 [==============================] - 0s 37us/sample - loss: 78.4461
Epoch 1000/1000
100/100 [==============================] - 0s 49us/sample - loss: 76.3849

<tensorflow.python.keras.callbacks.History at 0x139726668>

We see that the neural network can fit this sinusoidal data quite well,
as expected.

sess = tf.keras.backend.get_session()
x_test = np.float32(np.arange(-10.5,10.5,0.1))
x_test = x_test.reshape(x_test.size,1)
y_test = sess.run(nnetwork(x_test))

plt.figure(figsize=(8, 8))
plt.plot(x_test, y_test, 'r-', label='Predictive mean');
plt.scatter(x_train, y_train, marker='+', label='Training data')
plt.xticks(np.arange(-10., 10.5, 4))
plt.title('Standard Neural Network')
plt.legend();

[image: ../_images/output_7_0.png]
However, the model uncertainty is not appropriately captured. For
example, when making predictions about a single point (e.g. around
x=2.0), we can see we do not have into account the inherent noise there
is in the prediction. In the next section, we will what happen when we
introduce a Bayesian approach using InferPy.

Learning Bayesian Neural Networks

Bayesian
modeling [http://mlg.eng.cam.ac.uk/zoubin/papers/NatureReprint15.pdf]
offers a systematic framework for reasoning about model uncertainty.
Instead of just learning point estimates, we’re going to learn a
distribution over variables that are consistent with the observed data.

In Bayesian learning, the weights of the network are
random variables. The output of the nework is another
random variable which is the one that implicitlyl defines the
loss function. So, when making Bayesian learning we do not define
loss functions, we do define random variables. For more
information you can check this
talk [https://www.cs.ox.ac.uk/people/yarin.gal/website/PDFs/2017_OReilly_talk.pdf]
and this paper [https://arxiv.org/abs/1908.03442].

In Inferpy [https://inferpy.readthedocs.io], defining a Bayesian
neural network is quite straightforward. First we define the neural
network using inf.layers.Sequential and layers of class
tfp.layers.DenseFlipout. Second, the input x and output y
are also defined as random variables. More precisely, the output y
is defined as a Gaussian random varible. The mean of the Gaussian is the
output of the neural network.

@inf.probmodel
def model(NHIDDEN):

 with inf.datamodel():
 x = inf.Normal(loc = tf.zeros([1]), scale = 1.0, name="x")

 nnetwork = inf.layers.Sequential([
 tfp.layers.DenseFlipout(NHIDDEN, activation=tf.nn.tanh),
 tfp.layers.DenseFlipout(1)
])

 y = inf.Normal(loc = nnetwork(x) , scale= 1., name="y")

To perform Bayesian learning, we resort to the scalable variational
methods available in InferPy, which require the definition of a q
model. For details, see the documentation about Inference in
Inferpy [https://inferpy.readthedocs.io/projects/develop/en/develop/notes/guideinference.html].
For a deeper theoretical despcription, read this
paper [https://arxiv.org/abs/1908.03442]. In this case, the q
variables approximating the NN are defined in a transparent manner. For
that reason we define an empty q model.

@inf.probmodel
def qmodel():
 pass

NHIDDEN=20

p = model(NHIDDEN)
q = qmodel()

VI = inf.inference.VI(q, optimizer = tf.train.AdamOptimizer(0.01), epochs=5000)

p.fit({"x": x_train, "y": y_train}, VI)

0 epochs 3477.63818359375....................
200 epochs 2621.487548828125....................
400 epochs 2294.40478515625....................
600 epochs 2003.2978515625....................
800 epochs 1932.5308837890625....................
1000 epochs 1912.515625....................
1200 epochs 1909.4072265625....................
1400 epochs 1908.7269287109375....................
1600 epochs 1908.28564453125....................
1800 epochs 1909.939697265625....................
2000 epochs 1907.779052734375....................
2200 epochs 1908.8096923828125....................
2400 epochs 1907.308349609375....................
2600 epochs 1907.8809814453125....................
2800 epochs 1906.529541015625....................
3000 epochs 1906.2943115234375....................
3200 epochs 1906.744140625....................
3400 epochs 1905.798828125....................
3600 epochs 1905.2296142578125....................
3800 epochs 1905.57275390625....................
4000 epochs 1905.6163330078125....................
4200 epochs 1904.5223388671875....................
4400 epochs 1904.778564453125....................
4600 epochs 1904.68408203125....................
4800 epochs 1903.94970703125....................

As can be seen in the next figure, the output of our model is not
deterministic. So, we can capture the uncertainty in the data. See for
example what happens now with the predictions at the point x=2.0.
See also what happens with the uncertainty in out-of-range predictions.

x_test = np.linspace(-20.5, 20.5, NSAMPLE).reshape(-1, 1)

plt.figure(figsize=(8, 8))

y_pred_list = []
for i in range(100):
 y_test = p.posterior_predictive(["y"], data = {"x": x_test}).sample()
 y_pred_list.append(y_test)

y_preds = np.concatenate(y_pred_list, axis=1)

y_mean = np.mean(y_preds, axis=1)
y_sigma = np.std(y_preds, axis=1)

plt.plot(x_test, y_mean, 'r-', label='Predictive mean');
plt.scatter(x_train, y_train, marker='+', label='Training data')
plt.fill_between(x_test.ravel(),
 y_mean + 2 * y_sigma,
 y_mean - 2 * y_sigma,
 alpha=0.5, label='Epistemic uncertainty')
plt.xticks(np.arange(-20., 20.5, 4))
plt.title('Bayesian Neural Network')
plt.legend();

[image: ../_images/output_16_0.png]

Comparison: Logistic Regression

Here, the InferPy code is compared with other similar frameworks.
A logistic regression will be considered.

Setting up

First the required packages are imported. Variable d is the number of predictive
attributes while N is the number of observations.

InferPy

import inferpy as inf
import numpy as np
import tensorflow as tf

d = 2
N = 10000

TFP/Edward 2

from tensorflow_probability import edward2 as ed
import tensorflow as tf

d = 2
N = 50000

Pyro

import torch
import pyro
from pyro.distributions import Normal, Binomial
from pyro.infer import SVI, Trace_ELBO
from pyro.optim import Adam
from pyro.contrib.autoguide import AutoDiagonalNormal

d = 2
N = 1000

Model definition

Models are defined as functions. In case of InferPy these must be decoraed
with @inf.probmodel. Inspired in Pyro, InferPy uses construct inf.datamodel
for simplifying the definition of the variables dimension. In the following
code fragments, P and Q models are defined.

InferPy

@inf.probmodel
def log_reg(d):
 w0 = inf.Normal(0., 1., name="w0")
 w = inf.Normal(np.zeros([d, 1]), np.ones([d, 1]), name="w")

 with inf.datamodel():
 x = inf.Normal(np.zeros(d), 2., name="x") # the scale is broadcasted to shape [d] because of loc
 y = inf.Bernoulli(logits=w0 + x @ w, name="y")

@inf.probmodel
def qmodel(d):
 qw0_loc = inf.Parameter(0., name="qw0_loc")
 qw0_scale = tf.math.softplus(inf.Parameter(1., name="qw0_scale"))
 qw0 = inf.Normal(qw0_loc, qw0_scale, name="w0")

 qw_loc = inf.Parameter(tf.zeros([d, 1]), name="qw_loc")
 qw_scale = tf.math.softplus(inf.Parameter(tf.ones([d, 1]), name="qw_scale"))
 qw = inf.Normal(qw_loc, qw_scale, name="w")

TFP/Edward 2

def log_reg(d, N, w_init=(1, 1), x_init=(0, 1)):
 w = ed.Normal(loc=tf.ones([d], dtype="float32") * w_init[0], scale=1. * w_init[1], name="w")
 w0 = ed.Normal(loc=1. * w_init[0], scale=1. * w_init[1], name="w0")

 x = ed.Normal(loc=tf.ones([N, d], dtype="float32") * x_init[0], scale=1. * x_init[1], name="x")
 y = ed.Bernoulli(logits=tf.tensordot(x, w, axes=[[1], [0]]) + w0, name="y")

 return x, y, (w, w0)

def qmodel(d, N):
 qw_loc = tf.Variable(tf.ones([d]))
 qw_scale = tf.math.softplus(tf.Variable(tf.ones([d])))
 qw0_loc = tf.Variable(1.)
 qw0_scale = tf.math.softplus(tf.Variable(1.))

 qw = ed.Normal(loc=qw_loc, scale=qw_scale, name="qw")
 qw0 = ed.Normal(loc=qw0_loc, scale=qw0_scale, name="qw0")
 return qw, qw0

Pyro

def log_reg(x_data=None, y_data=None):
 w = pyro.sample("w", Normal(torch.zeros(d), torch.ones(d)))
 w0 = pyro.sample("w0", Normal(0., 1.))

 with pyro.plate("map", N):
 x = pyro.sample("x", Normal(torch.zeros(d), 2).to_event(1), obs=x_data)
 logits = (w0 + x @ torch.FloatTensor(w)).squeeze(-1)
 y = pyro.sample("pred", Binomial(logits = logits), obs=y_data)

 return x,y

qmodel = AutoDiagonalNormal(log_reg)

Sample form the pior model

Now we can sample from the P-model in which the global parameters are
fixed. As it can be observed below, this is more complex in TFP.

InferPy

instance of the model
m = log_reg(d)

create toy data
data = m.prior(["x", "y"], data={"w0": 0, "w": [[2], [1]]}).sample(N)
x_train = data["x"]
y_train = data["y"]

TFP/Edward 2

def set_values(**model_kwargs):
 """Creates a value-setting interceptor."""

 def interceptor(f, *args, **kwargs):
 """Sets random variable values to its aligned value."""
 name = kwargs.get("name")
 if name in model_kwargs:
 kwargs["value"] = model_kwargs[name]
 else:
 print(f"set_values not interested in {name}.")
 return ed.interceptable(f)(*args, **kwargs)

 return interceptor

with ed.interception(set_values(w=[2, 1], w0=0)):
 generate = log_reg(d, N, x_init=(2, 10))

with tf.Session() as sess:
 x_train, y_train, _ = sess.run(generate)

Pyro

sampler = pyro.condition(log_reg, data={"w0": 0, "w": [2,1]})
x_train, y_train = sampler()

Inference

Using the data generated, variational inference can be done as follows.
This is quite simple with our package, while TFP and Pyro require the user to implement
optimization loop.

InferPy

VI = inf.inference.VI(qmodel(d), epochs=10000)
m.fit({"x": x_train, "y": y_train}, VI)

TFP/Edward 2

qw, qw0 = qmodel(d, N)

with ed.interception(set_values(w=qw, w0=qw0, x=x_train, y=y_train)):
 post_x, post_y, (post_w, post_w0) = log_reg(d, N)

energy = tf.reduce_sum(post_x.distribution.log_prob(post_x.value)) + \
 tf.reduce_sum(post_y.distribution.log_prob(y_train)) + \
 tf.reduce_sum(post_w.distribution.log_prob(qw.value)) + \
 tf.reduce_sum(post_w0.distribution.log_prob(qw0.value))

entropy = -(tf.reduce_sum(qw.distribution.log_prob(qw.value)) + \
 tf.reduce_sum(qw0.distribution.log_prob(qw0.value)))

ELBO definition
elbo = energy + entropy

Optimization loop
optimizer = tf.train.AdamOptimizer(learning_rate=0.05)
train = optimizer.minimize(-elbo)

init = tf.global_variables_initializer()

t = []
num_epochs = 10000
with tf.Session() as sess:
 sess.run(init)

 for i in range(num_epochs):
 sess.run(train)
 if i % 5 == 0:
 t.append(sess.run([elbo]))

 if i % 50 == 0:
 print(sess.run(elbo))

 w_post = sess.run(qw.distribution.loc)
 w0_post = sess.run(qw0.distribution.loc)

Pyro

optim = Adam({"lr": 0.1})
svi = SVI(log_reg, qmodel, optim, loss=Trace_ELBO(), num_samples=10)

num_iterations = 10000
pyro.clear_param_store()
for j in range(num_iterations):
 # calculate the loss and take a gradient step
 loss = svi.step(x_train, y_train)
 print("[iteration %04d] loss: %.4f" % (j + 1, loss / len(x_train)))

Usage of the inferred model

Finally, the posterior distributions of the global parameters w
can be shown w0. From the posterior predictive distribution,
samples can be generated as follows.

InferPy

Print the parameters
w_post = m.posterior("w").parameters()["loc"]
w0_post = m.posterior("w0").parameters()["loc"]

print(w_post, w0_post)

Sample from the posterior
post_sample = m.posterior_predictive(["x","y"], data={"w":w_post, "w":w0_post}).sample()
x_gen = post_sample["x"]
y_gen = post_sample["y"]

print(x_gen, y_gen)

TFP/Edward 2

Print the parameters
print(w_post, w0_post)

Sample form the posterior
with ed.interception(set_values(w=w_post, w0=w0_post)):
 generate = log_reg(d, N, x_init=(0, 0))

with tf.Session() as sess:
 x_gen, y_gen, _ = sess.run(generate)

print(x_gen, y_gen)

Pyro

Print the parameters
w_post = qmodel()["w"]
w0_post = qmodel()["w0"]

print(w_post, w0_post)

Sample from the posterior
sampler_post = pyro.condition(log_reg, data={"w0": w0_post, "w": w_post})
x_gen, y_gen = sampler_post()

print(x_gen, y_gen)

Comparison: Variational auto-encoder

Here we make a comparison between tensorflow-probability/Edward 2, Pyro and InferPy. As a running example, we will consider
a variational auto-encoder (VAE) trained with the MNIST dataset containing handwritten digits. For the inference, SVI method
will be used.

Setting up

First, we import the required packages and set the global variables. This code is common for the 3 different frameworks:

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import inferpy as inf
import pyro
import torch
import tensorflow_probability.python.edward2 as ed

number of components
k = 2
size of the hidden layer in the NN
d0 = 100
dimensionality of the data
dx = 28 * 28
number of observations (dataset size)
N = 1000
batch size
M = 100
digits considered
DIG = [0, 1, 2]
minimum scale
scale_epsilon = 0.01
inference parameters
num_epochs = 1000
learning_rate = 0.01

tf.reset_default_graph()
tf.set_random_seed(1234)

Then, we can load and plot the MNIST dataset using the functionality provided by inferpy.data.mnist.

from inferpy.data import mnist

load the data
(x_train, y_train), _ = mnist.load_data(num_instances=N, digits=DIG)

mnist.plot_digits(x_train, grid=[5,5])

The generated plot is shown in the figure below.

[image: MNIST training data.]

Model definition

P and Q models are defined as functions creating random variables. In the case of the VAE model, we must also
define the neural networks for encoding and decoding. For simplicity, they are also defined as functions. The model
definitions using InferPy, Edward and Pyro are shown below.

InferPy

P model and the decoder NN
@inf.probmodel
def vae(k, d0, dx):
 with inf.datamodel():
 z = inf.Normal(tf.ones(k), 1,name="z")

 decoder = inf.layers.Sequential([
 tf.keras.layers.Dense(d0, activation=tf.nn.relu),
 tf.keras.layers.Dense(dx)])

 x = inf.Normal(decoder(z), 1, name="x")

Q model for making inference
@inf.probmodel
def qmodel(k, d0, dx):
 with inf.datamodel():
 x = inf.Normal(tf.ones(dx), 1, name="x")

 encoder = tf.keras.Sequential([
 tf.keras.layers.Dense(d0, activation=tf.nn.relu),
 tf.keras.layers.Dense(2 * k)])

 output = encoder(x)
 qz_loc = output[:, :k]
 qz_scale = tf.nn.softplus(output[:, k:]) + scale_epsilon
 qz = inf.Normal(qz_loc, qz_scale, name="z")

TFP/Edward 2

def vae(k, d0, dx, N):
 z = ed.Normal(loc=tf.ones(k), scale=1., sample_shape=N, name="z")

 decoder = inf.layers.Sequential([
 tf.keras.layers.Dense(d0, activation=tf.nn.relu, name="h0"),
 tf.keras.layers.Dense(dx, name="h1")],
 name="decoder")
 x = ed.Normal(loc=decoder(z, d0, dx), scale=1., name="x")
 return z, x

Q model for making inference which is parametrized by the data x.
def qmodel(k, d0, x):
 encoder = tf.keras.Sequential([
 tf.keras.layers.Dense(d0, activation=tf.nn.relu, name="h0"),
 tf.keras.layers.Dense(2 * k, name="h1")],
 name = "encoder")
 output = encoder(x)
 qz_loc = output[:, :k]
 qz_scale = tf.nn.softplus(output[:, k:]) + scale_epsilon
 qz = ed.Normal(loc=qz_loc, scale=qz_scale, name="qz")
 return qz

Pyro

class Decoder(torch.nn.Module):
 def __init__(self, k, d0, dx):
 super(Decoder, self).__init__()
 # setup the two linear transformations used
 self.fc1 = torch.nn.Linear(k, d0)
 self.fc21 = torch.nn.Linear(d0, dx)
 # setup the non-linearities
 self.softplus = torch.nn.Softplus()
 self.sigmoid = torch.nn.Sigmoid()
 self.relu = torch.nn.ReLU()

 def forward(self, z):
 # define the forward computation on the latent z
 # first compute the hidden units
 hidden = self.relu(self.fc1(z))
 # return the parameter for the output Bernoulli
 # each is of size batch_size x 784
 #loc_img = self.sigmoid(self.fc21(hidden))
 loc_img = self.fc21(hidden)
 return loc_img

class Encoder(torch.nn.Module):
 def __init__(self, k, d0, dx):
 super(Encoder, self).__init__()
 # setup the three linear transformations used
 self.fc1 = torch.nn.Linear(dx, d0)
 self.fc21 = torch.nn.Linear(d0, k)
 self.fc22 = torch.nn.Linear(d0, k)
 # setup the non-linearities
 self.softplus = torch.nn.Softplus()

 def forward(self, x):
 # define the forward computation on the image x
 # first shape the mini-batch to have pixels in the rightmost dimension
 # then compute the hidden units
 hidden = self.softplus(self.fc1(x))
 # then return a mean vector and a (positive) square root covariance
 # each of size batch_size x k
 z_loc = self.fc21(hidden)
 z_scale = self.softplus(self.fc22(hidden))
 return z_loc, z_scale + scale_epsilon

class VAE(torch.nn.Module):
 def __init__(self, k=2, d0=100, dx=784):
 super(VAE, self).__init__()
 # create the encoder and decoder networks
 self.encoder = Encoder(k, d0, dx)
 self.decoder = Decoder(k, d0, dx)
 self.k = k

 def model(self, x):
 # register PyTorch module `decoder` with Pyro
 pyro.module("decoder", self.decoder)
 with pyro.plate("data", x.shape[0]):
 # setup hyperparameters for prior p(z)
 z_loc = x.new_zeros(torch.Size((x.shape[0], self.k)))
 z_scale = x.new_ones(torch.Size((x.shape[0], self.k)))
 # sample from prior (value will be sampled by guide when computing the ELBO)
 z = pyro.sample("latent", pyro.distributions.Normal(z_loc, z_scale).to_event(1))
 # decode the latent code z
 loc_img = self.decoder.forward(z)
 # score against actual images
 pyro.sample("obs", pyro.distributions.Normal(loc_img, 1).to_event(1), obs=x)

 # define the guide (i.e. variational distribution) q(z|x)
 def guide(self, x):
 # register PyTorch module `encoder` with Pyro
 pyro.module("encoder", self.encoder)
 with pyro.plate("data", x.shape[0]):
 # use the encoder to get the parameters used to define q(z|x)
 z_loc, z_scale = self.encoder.forward(x)
 # sample the latent code z
 pyro.sample("latent", pyro.distributions.Normal(z_loc, z_scale).to_event(1))

With InferPy we do not need to specify which is the size of the data (i.e., plateau or
datamodel construct). Instead, this will be automatically obtained at inference time.

With InferPy and Edward 2, models are defined as functions, though InferPy requires to use the decorator @inf.probmodel. On the
other hand, even though neural networks can be the same, in the Edward 2’s code these are defined with a name as this
will be later used for access to the learned weights. The code in Pyro (adapted from the one in the official documentation [https://pyro.ai/examples/vae.html])
is quite different as a class structure is used.

Inference

Setting up the inference and batched data

In Edward 2, before optimizing the variational parameters, we must: split the data into batches; create the instances of the P and Q
models; and finally build tensor for computing the variational ELBO, which represents the function that will be optimized.
The equivalent code using InferPy is much more simple, because most of the functionality is done transparently to the user:
we simply instantiate the P and Q models and the corresponding inference algorithm. Pyro’s code also remains quite simple because
most of the inference details are also encapsulated. Yet the user is required to split the data into batches using the
functionality in torch.utils.data.DataLoader.

InferPy

m = vae(k, d0, dx)
q = qmodel(k, d0, dx)

set the inference algorithm
SVI = inf.inference.SVI(q, epochs=1000, batch_size=M)

TFP/Edward 2

batch = tf.data.Dataset.from_tensor_slices(x_train)\
 .shuffle(M)\
 .batch(M)\
 .repeat()\
 .make_one_shot_iterator().get_next()

qz = qmodel(k, d0, batch)

with ed.interception(ed.make_value_setter(z=qz, x=batch)):
 pz, px = vae(k, d0, dx, M)

energy = N/M*tf.reduce_sum(pz.distribution.log_prob(pz.value)) + \
 N/M*tf.reduce_sum(px.distribution.log_prob(px.value))
entropy = N/M*tf.reduce_sum(qz.distribution.log_prob(qz.value))

elbo = energy - entropy

Pyro

setting up batched data
vae = VAE(k, d0, dx)

Load data and set batch_size
train_loader = torch.utils.data.DataLoader(torch.tensor(x_train), batch_size=M, shuffle=False)

setup the optimizer
adam_args = {"lr": learning_rate}
optimizer = pyro.optim.Adam(adam_args)

setup the inference algorithm
svi = pyro.infer.SVI(vae.model, vae.guide, optimizer, loss=pyro.infer.Trace_ELBO())

Optimization loop

In variational inference, parameters are iteratively optimized. When using Edward 2, we must first specify TensorFlow optimizers and training objects. Then the loop is explicitly coded as shown below. With Pyro, the optimization loop must coded by calling svi.step() at each iteration. By contrast, with InferPy, we simply invoke the method probmodel.fit() which takes as input parameters the data and the inference algorithm object previously defined.

InferPy

learn the parameters
m.fit({"x": x_train}, SVI)

TFP/Edward 2

sess = tf.Session()
optimizer = tf.train.AdamOptimizer(learning_rate)
train = optimizer.minimize(-elbo)
init = tf.global_variables_initializer()
sess.run(init)

t = []
for i in range(num_epochs + 1):
 for j in range(N // M):
 elbo_ij, _ = sess.run([elbo, train])

 t.append(elbo_ij)
 if j == 0 and i % 200 == 0:
 print("\n {} epochs\t {}".format(i, t[-1]), end="", flush=True)
 if j == 0 and i % 20 == 0:
 print(".", end="", flush=True)

Pyro

train_elbo = []
pyro.clear_param_store()

training loop
for epoch in range(num_epochs):
 epoch_loss = 0.
 for x in train_loader:
 # do ELBO gradient and accumulate loss
 epoch_loss += svi.step(x)

 normalizer_train = len(train_loader.dataset)
 total_epoch_loss_train = epoch_loss / normalizer_train

 train_elbo.append(-total_epoch_loss_train)

 if (epoch % 10) == 0:
 print(total_epoch_loss_train)

Usage of the inferred model

Once optimization is finished, we can use the model with the inferred parameters. For example, we
might obtain the hidden representation of the original data, which is done by passing such data through the decoder.
Edward does not provide any functionality for this purpose, so we will use TensorFlow code. With InferPy, this is done by simply using the method probmodel.posterior() as follows.
For this, Pyro requires to invoke the class method vae.encoder.forward which performs the forward propagation in the encoder NN.

InferPy

extract the posterior and generate new digits
postz = np.concatenate([
 m.posterior("z", data={"x": x_train[i:i+M,:]}).sample()
 for i in range(0,N,M)])

TFP/Edward 2

def get_tfvar(name):
 for v in tf.trainable_variables():
 if str.startswith(v.name, name):
 return v

def predictive_nn(x, beta0, alpha0, beta1, alpha1):
 h0 = tf.nn.relu(x @ beta0 + alpha0)
 output = h0 @ beta1 + alpha1

 return output

weights_encoder = [sess.run(get_tfvar("encoder/h" + name)) for name in ["0/kernel", "0/bias", "1/kernel", "1/bias",]]
postz = sess.run(predictive_nn(x_train, *weights_encoder)[:, :k])

Pyro

extract the posterior of z
postz = np.concatenate([
 vae.encoder.forward(x)[0].detach().numpy()
 for x in train_loader])

The result of plotting the hidden representation is:

[image: Plot of the hidden encoding.]

We might be also interested in generating new digits, which implies passing some data in the hidden space
through the decoder. With InferPy we must just invoke the method probmodel.posterior_predictive().
In Pyro this is done by invoking the class method vae.encoder.forward which performs the forward propagation in the decoder NN.

InferPy

x_gen = m.posterior_predictive('x', data={"z": postz[:M,:]}).sample()
mnist.plot_digits(x_gen, grid=[5,5])

TFP/Edward 2

weights_decoder = [sess.run(get_tfvar("decoder/h" + name)) for name in ["0/kernel", "0/bias", "1/kernel", "1/bias",]]
x_gen = sess.run(predictive_nn(postz, *weights_decoder)[:, :dx])

nx, ny = (3,3)
fig, ax = plt.subplots(nx, ny, figsize=(12, 12))
fig.tight_layout(pad=0.3, rect=[0, 0, 0.9, 0.9])
for x, y in [(i, j) for i in list(range(nx)) for j in list(range(ny))]:
 img_i = x_gen[x + y * nx].reshape((28, 28))
 i = (y, x) if nx > 1 else y
 ax[i].imshow(img_i, cmap='gray')
plt.show()

Pyro

generate new digits
x_gen = vae.decoder.forward(torch.Tensor(postz[:M,:]))
mnist.plot_digits(x_gen.detach().numpy(), grid=[5,5])

Some of the resulting images are shown below.

[image: MNIST generated data.]

Contact and Support

If you have any question about the toolbox or if you want to collaborate in the project, please do not hesitate to
contact us. You can do it through the following email address: inferpy.api@gmail.com

For more technical questions, please use Github issues [https://github.com/PGM-Lab/InferPy/issues].

Getting Started

Guiding Principles

Features

The main features of InferPy are listed below.

	Allows a simple definition of inference over probabilistic models containing deep neural networks.

	The models that can be defined in InferPy are those that can be defined using Edward2 (i.e., tfp.edward2), whose probability distributions
are mainly inherited from the module distributions in the tensorflow-probability package.

	Edward’s drawback is that for the model definition, the user has to manage complex multi-dimensional arrays called
tensors. By contrast, in InferPy all the parameters in a model can be defined using the standard Python types
(compatibility with Numpy is available as well).

	InferPy directly relies on top of Edward’s inference engine and thus
includes all the inference algorithms available in that package. As
Edward’s inference engine relies on TensorFlow computing engine,
InferPy also relies on it too.

	Unlike Edward, our package does not require a strong background in the inference methods.

Architecture

Given the previous considerations, we can summarize the InferPy architecture as follows.

[image: InferPy architecture]

Note that InferPy can be seen as an upper layer for working with probabilistic distributions defined
over tensors. Most of the interaction is done with Edward: the definitions of the random variables and the
inference. However, InferPy also interacts directly with TensorFlow in some operations that are hidden to
the user, e.g., the manipulation of the tensors representing the parameters of the distributions.

An additional advantage of using Edward and TensorFlow as inference engine is that all the parallelization details
are hidden to the user. Moreover, the same code will run either in CPUs or GPUs.

Guide to Bayesian Deep Learning

Models Containing Neural Networks

InferPy inherits Edward’s approach for representing probabilistic models
as (stochastic) computational graphs. As described above, a random
variable \(x\) is associated to a tensor \(x^*\) in the
computational graph handled by TensorFlow, where the computations take
place. This tensor \(x^*\) contains the samples of the random
variable \(x\), i.e. \(x^* \sim p(x|\theta)\). In this way,
random variables can be involved in complex deterministic operations
containing deep neural networks, math operations and other libraries
compatible with TensorFlow (such as Keras).

Bayesian deep learning or deep probabilistic programming embraces the
idea of employing deep neural networks within a probabilistic model in
order to capture complex non-linear dependencies between variables.
This can be done by combining InferPy with tf.layers, tf.keras or tfp.layers.

InferPy’s API gives support to this powerful and flexible modeling
framework. Let us start by showing how a non-linear PCA.

import inferpy as inf
import tensorflow as tf

number of components
k = 1
size of the hidden layer in the NN
d0 = 100
dimensionality of the data
dx = 2
number of observations (dataset size)
N = 1000

@inf.probmodel
def nlpca(k, d0, dx, decoder):

 with inf.datamodel():
 z = inf.Normal(tf.ones([k])*0.5, 1., name="z") # shape = [N,k]
 output = decoder(z,d0,dx)
 x_loc = output[:,:dx]
 x_scale = tf.nn.softmax(output[:,dx:])
 x = inf.Normal(x_loc, x_scale, name="x") # shape = [N,d]

def decoder(z,d0,dx):
 h0 = tf.layers.dense(z, d0, tf.nn.relu)
 return tf.layers.dense(h0, 2 * dx)

Q-model approximating P

@inf.probmodel
def qmodel(k):
 with inf.datamodel():
 qz_loc = inf.Parameter(tf.ones([k])*0.5, name="qz_loc")
 qz_scale = tf.math.softplus(inf.Parameter(tf.ones([k]),name="qz_scale"))

 qz = inf.Normal(qz_loc, qz_scale, name="z")

create an instance of the model
m = nlpca(k,d0,dx, decoder)

set the inference algorithm
VI = inf.inference.VI(qmodel(k), epochs=5000)

learn the parameters
m.fit({"x": x_train}, VI)

#extract the hidden representation
hidden_encoding = m.posterior("z")
print(hidden_encoding.sample())

In this case, the parameters of the decoder neural network (i.e., weights)
are automatically managed by TensorFlow. These parameters are treated as
model parameters and not exposed to the user. In consequence, we can not
be Bayesian about them by defining specific prior distributions.

Alternatively, we could use Keras layers by simply defining an alternative
decoder function as follows.

def decoder_keras(z,d0,dx):
 h0 = tf.keras.layers.Dense(d0, activation=tf.nn.relu)
 h1 = tf.keras.layers.Dense(2*dx)
 return h1(h0(z))

create an instance of the model
m = nlpca(k,d0,dx, decoder_keras)
m.fit({"x": x_train}, VI)

InferPy is also compatible with Keras models such as tf.keras.Sequential`:

def decoder_seq(z,d0,dx):
 return tf.keras.Sequential([
 tf.keras.layers.Dense(d0, activation=tf.nn.relu),
 tf.keras.layers.Dense(2 * dx)
])(z)

create an instance of the model and fit the data
m = nlpca(k,d0,dx, decoder_seq)
m.fit({"x": x_train}, VI)

Bayesian Neural Networks

InferPy allows the definition of Bayesian NN using the same dense variational layers
that are available in tfp.layers, i.e.:

	DenseFlipout: Densely-connected layer class with Flipout estimator.

	DenseLocalReparameterization: Densely-connected layer class with local reparameterization estimator.

	DenseReparameterization: Densely-connected layer class with reparameterization estimator.

The weights of these layers are drawn from distributions whose posteriors are calculated
using variational inference. For more details, check the official tfp documentation [https://www.tensorflow.org/probability/api_docs/python/tfp/layers/dense_variational].
For its usage, we simply need to include them in an InferPy
Sequential model inf.layers.Sequential as follows.

import tensorflow_probability as tfp

def decoder_bayesian(z,d0,dx):
 return inf.layers.Sequential([
 tfp.layers.DenseFlipout(d0, activation=tf.nn.relu),
 tfp.layers.DenseLocalReparameterization(d0, activation=tf.nn.relu),
 tfp.layers.DenseReparameterization(d0, activation=tf.nn.relu),
 tf.keras.layers.Dense(2 * dx)
])(z)

create an instance of the model
m = nlpca(k,d0,dx, decoder_bayesian)
m.fit({"x": x_train}, VI)

Note that this model differs from the one provided by Keras. A more detailed example
with Bayesian layers is given here.

Guide to Data Handling

The module inferpy.data.loaders provides the basic functionality for handling data. In particular,
all the classes for loading data will inherit from the class DataLoader defined at
this module.

CSV files

Data can be loaded from CSV files through the class CsvLoader whose
objects can be built as follows:

from inferpy.data.loaders import CsvLoader

data_loader = CsvLoader(path="./tests/files/dataxy_0.csv")

where path can be either a string indicating the location of the csv file or
a list of strings (i.e., for datasets distributed across multiple CSV files):

file_list = [f"./tests/files/dataxy_{i}.csv" for i in [0,1]]
data_loader = CsvLoader(path=file_list)

A data loader can be built from CSV files with or without a header.
However, in case of a list of files, the presence of the header and column names must
be consistent among all the files.

When loading data from a CSV file, we might need to
map the columns in the dataset to another set of variables. This can be made
using the input argument var_dict, which is a dictionary where the
keys are the variable names and the values are lists of integers indicating
the columns (0 stands for the first data column). For example, in a data set whose columns names
are "x" and "y", we might be interested in renaming them:

data_loader = CsvLoader(path="./tests/files/dataxy_0.csv", var_dict={"x1":[0], "x2":[1]})

This mapping functionality can also be used for grouping columns into a single
variable:

data_loader = CsvLoader(path="./tests/files/dataxy_0.csv", var_dict={"A":[0,1]})

Data in memory

Analogously, a data loader can be built from data already loaded into memory, e.g.,
pandas data. To do this, we will use the class SampleDictLoader which can be
instantiated as follows.

from inferpy.data.loaders import SampleDictLoader

samples = {"x": np.random.rand(1000), "y": np.random.rand(1000)}
data_loader = SampleDictLoader(sample_dict=samples)

Properties

From any object of class DataLoader we can obtain the size, (i.e., number of instances)
of the list of variable names:

>>> data_loader.size
1000
>>> data_loader.variables
['x', 'y']

In case of a CsvLoader, we can determine if the source files have or not
a header:

>>> data_loader.has_header
True

Extracting data

Data can be loaded as a dictionary (of numpy objects) or as TensorFlow dataset object:

>>> data_loader.to_dict()
{'x': array([1.54217069e-02, 3.74321848e-02, 1.29080105e-01, ... ,8.44103262e-01]),
 'y': array([1.49197044e-01, 4.19856938e-01, 2.63596605e-01, ... ,1.20826740e-01])}

>>> data_loader.to_tfdataset(batch_size=50)
<DatasetV1Adapter shapes: OrderedDict([(x, (50,)), (y, (50,))]),
types: OrderedDict([(x, tf.float32), (y, tf.float32)])>

Usage with probabilistic models

Making inference in a probabilistic model is the final goal of loading data.
Consider the following code of a simple linear regression:

@inf.probmodel
def linear_reg(d):
 w0 = inf.Normal(0, 1, name="w0")
 w = inf.Normal(tf.zeros([d,1]), 1, name="w")

 with inf.datamodel():
 x = inf.Normal(tf.ones([d]), 2, name="x")
 y = inf.Normal(w0 + x @ w, 1.0, name="y")

@inf.probmodel
def qmodel(d):
 qw0_loc = inf.Parameter(0., name="qw0_loc")
 qw0_scale = tf.math.softplus(inf.Parameter(1., name="qw0_scale"))
 qw0 = inf.Normal(qw0_loc, qw0_scale, name="w0")

 qw_loc = inf.Parameter(tf.zeros([d,1]), name="qw_loc")
 qw_scale = tf.math.softplus(inf.Parameter(tf.ones([d,1]), name="qw_scale"))
 qw = inf.Normal(qw_loc, qw_scale, name="w")

create an instance of the model
m = linear_reg(d=1)
vi = inf.inference.VI(qmodel(1), epochs=100)

We have seen so far that, for making inference we invoke the method fit which
takes a dictionary of samples as an input parameter:

m.fit(data={"x": np.random.rand(1000,1), "y": np.random.rand(1000,1)}, inference_method=vi)

The data parameter can be replaced by an object of
class DataLoader:

data_loader = CsvLoader(path="./tests/files/dataxy_with_header.csv")
m.fit(data=data_loader, inference_method=vi)

Note that column names must be the same as those in the model. In case
of being different or reading from a file without header, we use
the mapping functionality:

data_loader = CsvLoader(path="./tests/files/dataxy_no_header.csv", var_dict={"x":[0], "y":[1]})
m.fit(data=data_loader, inference_method=vi)

Guide to Approximate Inference

Variational Inference

The API defines the set of algorithms and methods used to perform
inference in a probabilistic model \(p(x,z,\theta)\) (where
\(x\) are the observations, \(z\) the local hidden variables,
and \(\theta\) the global parameters of the model). More precisely,
the inference problem reduces to computing the posterior probability over
the latent variables given a data sample, i.e.,
\(p(z,\theta | x_{train})\), because from these
posteriors we can uncover the hidden structure in the data. Let us consider the
following model:

@inf.probmodel
def pca(k,d):
 w = inf.Normal(loc=tf.zeros([k,d]), scale=1, name="w") # shape = [k,d]
 with inf.datamodel():
 z = inf.Normal(tf.ones([k]),1, name="z") # shape = [N,k]
 x = inf.Normal(z @ w , 1, name="x") # shape = [N,d]

In this model, the posterior over the local hidden variables, \(p(w_n|x_{train})\),
encodes the latent vector representation of the sample \(x_n\), while the posterior
over the global variables \(p(\mu|x_{train})\) reveals which is the affine transformation
between the latent and the observable spaces.

InferPy inherits Edward’s approach and considers approximate inference
solutions,

\[q(z,\theta) \approx p(z,\theta | x_{train})\]

in which the task is to approximate the posterior
\(p(z,\theta | x_{train})\) using a family of distributions,
\(q(z,\theta; \lambda)\), indexed by a parameter vector
\(\lambda\).

For doing inference, we must define a model ‘Q’ for approximating the
posterior distribution. This is also done by defining a function decorated
with @inf.probmodel:

@inf.probmodel
def qmodel(k,d):
 qw_loc = inf.Parameter(tf.ones([k,d]), name="qw_loc")
 qw_scale = tf.math.softplus(inf.Parameter(tf.ones([k, d]), name="qw_scale"))
 qw = inf.Normal(qw_loc, qw_scale, name="w")

 with inf.datamodel():
 qz_loc = inf.Parameter(tf.ones([k]), name="qz_loc")
 qz_scale = tf.math.softplus(inf.Parameter(tf.ones([k]), name="qz_scale"))
 qz = inf.Normal(qz_loc, qz_scale, name="z")

In the ‘Q’ model we should include a q distribution for each non-observed variable in
the ‘P’ model. These variables are also objects of class inferpy.RandomVariable.
However, their parameters might be of type inf.Parameter, which are objects
encapsulating TensorFlow trainable variables.

Then, we set the parameters of the inference algorithm. In case of variational inference
(VI) we must specify an instance of the ‘Q’ model and the number of epochs (i.e.,
iterations). For example:

set the inference algorithm
VI = inf.inference.VI(qmodel(k=1,d=2), epochs=1000)

VI can be further configured by setting the parameter optimizer which
indicates the TensorFlow optimizer to be used (AdamOptimizer by default).

Stochastic Variational Inference (SVI) is similarly specified but has an additional input parameter for setting
the batch size:

SVI = inf.inference.SVI(qmodel(k=1,d=2), epochs=1000, batch_size=200)

Then we must instantiate ‘P’ model and fit the data with the inference
algorithm previously defined.

create an instance of the model
m = pca(k=1,d=2)
run the inference
m.fit({"x": x_train}, VI)

The output generated will be similar to:

 0 epochs	 44601.14453125....................
 200 epochs	 44196.98046875....................
 400 epochs	 50616.359375....................
 600 epochs	 41085.6484375....................
 800 epochs	 30349.79296875....................

Finally, we can access the parameters of the posterior distributions:

>>> m.posterior("w").parameters()
{'name': 'w',
 'allow_nan_stats': True,
 'validate_args': False,
 'scale': array([[0.9834974 , 0.99731755]], dtype=float32),
 'loc': array([[1.7543027, 1.7246702]], dtype=float32)}

Custom Loss function

Following InferPy guiding principles, users can further configure the inference algorithm.
For example, we might be interested in defining our own function to minimize when using VI. As
an example, we define the following function taking as input parameters the random variables
of the P and Q models (we assume that their sample sizes are consistent with the plates in the model). Note that the output of
this function must be a tensor.

def custom_elbo(pvars, qvars, **kwargs):

 # compute energy
 energy = tf.reduce_sum([tf.reduce_sum(p.log_prob(p.value)) for p in pvars.values()])

 # compute entropy
 entropy = - tf.reduce_sum([tf.reduce_sum(q.log_prob(q.value)) for q in qvars.values()])

 # compute ELBO
 ELBO = energy + entropy

 # This function will be minimized. Return minus ELBO
 return -ELBO

In order to use our defined loss function, we simply have to pass it to the
input parameter loss in the inference method constructor. For example:

set the inference algorithm
VI = inf.inference.VI(qmodel(k=1,d=2), loss=custom_elbo, epochs=1000)

run the inference
m.fit({"x": x_train}, VI)

After this, the rest of the code remains unchanged.

Markov Chain Monte Carlo

Relying on Edward functionality, Markov Chain Monte Carlo (MCMC) is also available for doing inference on InferPy
models. To this end, an object of class inf.inference.MCMC is created and passed to the model when fitting the data.
Unlike variational inference, a Q-model is not created for doing inference.

set the inference algorithm
MC = inf.inference.MCMC()
run the inference
m.fit({"x": x_train}, MC)

Now the posterior is represented as a set of samples. So we might need to aggregate them, e.g., using the mean:

extract the posterior of z
hidden_encoding = m.posterior("z").parameters()["samples"].mean(axis=0)

Queries

The syntax of queries allows using the probabilistic models specifying a type of knowledge: prior, posterior or posterior
predictive. That means that, for example, we can generate new instances from the prior knowledge (using the initial
model definition), or the posterior/posterior predictive knowledge (once the model has been trained using input data).
There are two well-differentiated parts: the query definition and the action function. The action functions can be applied
on Query objects to:

	sample: samples new data.

	log_prob: computes the log prob given some evidence (observed variables).

	sum_log_prob: the same as log_prob, but computes the sum of the log prob for all the variables in the probabilistic model.

	parameters: returns the parameters of the Random Variables (i.e.: loc and scale for Normal distributions).

Building Query objects

Given a probabilistic model object, i.e.: model, we can build Query objects by calling the prior(),
posterior() or posterior_predictive() methods of the probmodel class. All these accept the same two
arguments:

	target_names: A string or list of strings that correspond to random variable names. These random variables
are the targets of the queries (in other words, the random variables that we want to use when calling an action).

	data: A dict that contains as keys the names of the random variables, and the values the observed data for those
random variables. By default, it is an empty dict.

Each funtion is defined as follows:

	prior(): This function returns Query objects that use the random variables initially defined in the model
when applying the actions. It just uses prior knowledge and can be invoked once the model object is created.

	posterior(): This function returns Query objects that use the expanded random variables defined and
fitted after the training process. It utilizes the posterior knowledge and can be used only after calling the fit
function. The target variables allowed are those not observed during the training process.

	posterior_predictive(): This function is similar to the posterior, but he target variables permitted
in this function are those observed during the training process.

Action functions

Action functions allow getting the desired information from the Query objects. As described before, actually
there are four functions:

	sample(size): Generates _size_ instances (by default size=1). It returns a dict, where the keys are the
random variable names and the values are the sample data. If there is only one target name, only the sample data is returned.

	log_prob(): computes the log prob given the evidence specified in the Query object. It returns a dict,
where the keys are the random variable names and the values are the log probs. If there is only one target name,
only the log prob is returned.

	sum_log_prob(): the same as log_prob, but computes the sum of the log prob for all the variables
in the probabilistic model.

	parameters(names): returns the parameters of the Random Variables. If names is None (by default)
it returns all the parameters of all the random variables. If names is a string or a list of strings,
that corresponds to parameter names, then it returns the parameters of the random variables that match with any name provided in the _names_ argument. It returns a dict, where the keys are the random variable names and
the values are the dict of parameters (name of parameter: parameter value). If there is only one target name,
only the dict of parameters for such a random variable is returned.

Example

The following example illustrates the usage of queries.

import inferpy as inf
import tensorflow as tf

@inf.probmodel
def linear_reg(d):
 w0 = inf.Normal(0, 1, name="w0")
 w = inf.Normal(tf.zeros([d, 1]), 1, name="w")
 with inf.datamodel():
 x = inf.Normal(tf.ones(d), 2, name="x")
 y = inf.Normal(w0 + x @ w, 1.0, name="y")

m = linear_reg(2)

Generate 100 samples for x and y random variables, with random variables w and w0 observed
data = m.prior(["x", "y"], data={"w0": 0, "w": [[2], [1]]}).sample(100)

Define the qmodel and train
@inf.probmodel
def qmodel(d):
 qw0_loc = inf.Parameter(0., name="qw0_loc")
 qw0_scale = tf.math.softplus(inf.Parameter(1., name="qw0_scale"))
 qw0 = inf.Normal(qw0_loc, qw0_scale, name="w0")
 qw_loc = inf.Parameter(tf.zeros([d, 1]), name="qw_loc")
 qw_scale = tf.math.softplus(inf.Parameter(tf.ones([d, 1]), name="qw_scale"))
 qw = inf.Normal(qw_loc, qw_scale, name="w")

x_train = data["x"]
y_train = data["y"]

set and run the inference
VI = inf.inference.VI(qmodel(2), epochs=10000)
m.fit({"x": x_train, "y": y_train}, VI)

Now we can obtain the parameters of the hidden variables (after training)
m.posterior(["w", "w0"]).parameters()

We can also generate new samples for the posterior distribution of the random variable x
post_data = m.posterior_predictive(["x", "y"]).sample()

and we can check the log prob of the hidden variables, given the posterior sampled data
m.posterior(data=post_data).log_prob()

Guide to Probabilistic Models

Getting Started with Probabilistic Models

InferPy focuses on hierarchical probabilistic models structured
in two different layers:

	A prior model defining a joint distribution \(p(\mathbf{w})\)
over the global parameters of the model. \(\mathbf{w}\) can be a single random variable or a bunch of random variables with any given dependency structure.

	A data or observation model defining a joint conditional
distribution \(p(\mathbf{x},\mathbf{z}|\mathbf{w})\) over the observed quantities
\(\mathbf{x}\) and the the local hidden variables \(\mathbf{z}\) governing the
observation \(\mathbf{x}\). This data model is specified in a
single-sample basis. There are many models of interest without local
hidden variables, in that case, we simply specify the conditional
\(p(\mathbf{x}|\mathbf{w})\). Similarly, either \(\mathbf{x}\) or
\(\mathbf{z}\) can be a single random variable or a bunch of random variables
with any given dependency structure.

For example, a Bayesian PCA model has the following graphical structure,

[image: Linear Factor Model]

Bayesian PCA

The prior model is composed by the variables \(\bf{w}_k\). The data model is the part of the model surrounded by the box indexed by N.

And this is how this Bayesian PCA model is defined in InferPy:

definition of a generic model
@inf.probmodel
def pca(k,d):
 w = inf.Normal(loc=np.zeros([k,d]), scale=1, name="w") # shape = [k,d]
 with inf.datamodel():
 z = inf.Normal(np.ones(k),1, name="z") # shape = [N,k]
 x = inf.Normal(z @ w , 1, name="x") # shape = [N,d]

create an instance of the model
m = pca(k=1,d=2)

The with inf.datamodel() syntaxis is used to replicate the
random variables contained within this construct. It follows from the
so-called plateau notation to define the data generation part of a
probabilistic model. Every replicated variable is conditionally
independent given the previous random variables (if any) defined
outside the with statement. The plateau size will be later automatically calculated,
so there is no need to specify it. Yet, this construct has an optional input parameter for specifying
its size, e.g., with inf.datamodel(size=N). This should be consistent with the size of
the data.

Random Variables

Any random variable in InferPy encapsulates an equivalent one in Edward 2, and hence it also has associated
a distribution object from tensorflow-probability. These can be accessed using the properties var and
distribution respectively:

>>> x = inf.Normal(loc = 0, scale = 1)

>>> x.var
<ed.RandomVariable 'randvar_0/' shape=() dtype=float32>

>>> x.distribution
<tfp.distributions.Normal 'randvar_0/' batch_shape=() event_shape=() dtype=float32>

InferPy random variables inherit all the properties and methods from Edward2 variables or TensorFlow
Probability distributions (in this order or priority). For example:

>>> x.value
<tf.Tensor 'randvar_0/sample/Reshape:0' shape=() dtype=float32>

>>> x.sample()
-0.05060442

>>> x.loc
<tf.Tensor 'randvar_0/Identity:0' shape=() dtype=float32>

In the code, value is inherited form the encapsulated Edward2 object while sample() and the
parameter loc are obtained from the distribution object. Note that the method sample() returns
evaluated tensors. It can be avoided using the input parameter tf_run as follows.

>>> x.sample(tf_run=False)
<tf.Tensor 'randvar_0/sample/Reshape:0' shape=() dtype=float32>

Following Edward’s approach, we (conceptually) partition a random variable’s shape into three groups:

	Batch shape describes independent, not identically distributed draws. Namely, we may have a set of (different) parameterizations to the same distribution.

	Sample shape describes independent, identically distributed draws from the distribution.

	Event shape describes the shape of a single draw (event space) from the distribution; it may be dependent across dimensions.

The previous attributes can be accessed by x.batch_shape, x.sample_shape and x.event_shape,
respectively. When declaring random variables, the batch_shape is obtained from the distribution
parameters. For as long as possible, the parameters will be broadcasted. With this in mind, all the definitions in the
following code are equivalent.

x = inf.Normal(loc = [[0.,0.],[0.,0.],[0.,0.]], scale=1) # x.shape = [3,2]

x = inf.Normal(loc = np.zeros([3,2]), scale=1) # x.shape = [3,2]

x = inf.Normal(loc = 0, scale=tf.ones([3,2])) # x.shape = [3,2]

The sample_shape can be explicitly stated using the input parameter
sample_shape, but this only can be done outside a model definition.
Inside of inf.probmodels, the sample_shape is fixed by with inf.datamodel(size = N) (using the size argument
when provided, or in runtime depending on the observed data).

x = inf.Normal(tf.ones([3,2]), 0, sample_shape=100) # x.sample = [100,3,2]

with inf.datamodel(100):
 x = inf.Normal(tf.ones([3, 2]), 0) # x.sample = [100,3,2]

Finally, the event shape will only be considered in some distributions. This is the case of the
multivariate Gaussian:

x = inf.MultivariateNormalDiag(loc=[1., -1], scale_diag=[1, 2.])

>>> x.event_shape
TensorShape([Dimension(2)])

>>> x.batch_shape
TensorShape([])

>>> x.sample_shape
TensorShape([])

Note that indexing over all the defined dimensions is supported:

with inf.datamodel(size=10):
 x = inf.models.Normal(loc=tf.zeros(5), scale=1.) # x.shape = [10,5]

y = x[7,4] # y.shape = []

y2 = x[7] # y2.shape = [5]

y3 = x[7,:] # y2.shape = [5]

y4 = x[:,4] # y4.shape = [10]

Moreover, we may use indexation for defining new variables whose indexes may be other (discrete) variables.

i = inf.Categorical(logits= tf.zeros(3)) # shape = []
mu = inf.Normal([5,1,-2], 0.) # shape = [3]
x = inf.Normal(mu[i], scale=1.) # shape = []

Probabilistic Models

A probabilistic model defines a joint distribution over observable
and hidden variables, i.e., \(p(\mathbf{w}, \mathbf{z}, \mathbf{x})\). Note that a
variable might be observable or hidden depending on the fitted data. Thus this is
not specified when defining the model.

A probabilistic model is defined by decorating any function with @inf.probmodel.
The model is made of any variable defined inside this function. A simple example is shown
below.

@inf.probmodel
def simple(mu=0):
 # global variables
 theta = inf.Normal(mu, 0.1, name="theta")

 # local variables
 with inf.datamodel():
 x = inf.Normal(theta, 1, name="x")

Note that any variable in a model can be initialized with a name. Otherwise, names generated
automatically will be used. However, it is highly convenient to explicitly specify the name of a random variable because
in this way it will be able to be referenced in some inference stages.

The model must be instantiated before it can be used. This is done by simply invoking the function (which will return a probmodel object).

>>> m = simple()
>>> type(m)
<class 'inferpy.models.prob_model.ProbModel'>

Now we are ready to use the model with the prior probabilities. For example,
we might get a sample or access the distribution parameters:

>>> m.prior().sample()
{'theta': -0.074800275, 'x': array([0.07758344], dtype=float32)}

>>> m.prior().parameters()
{'theta': {'name': 'theta',
 'allow_nan_stats': True,
 'validate_args': False,
 'scale': 0.1,
 'loc': 0},
 'x': {'name': 'x',
 'allow_nan_stats': True,
 'validate_args': False,
 'scale': 1,
 'loc': 0.116854645}}

or to extract the variables:

>>> m.vars["theta"]
<inf.RandomVariable (Normal distribution) named theta/, shape=(), dtype=float32>

We can create new and different instances of our model:

>>> m2 = simple(mu=5)
>>> m==m2
False

Supported Probability Distributions

Supported probability distributions are located in the package inferpy.models. All of them
have inferpy.models.RandomVariable as the superclass. A list with all the supported distributions can be obtained as follows.

>>> inf.models.random_variable.distributions_all
['Autoregressive', 'BatchReshape', 'Bernoulli', 'Beta', 'BetaWithSoftplusConcentration',
 'Binomial', 'Categorical', 'Cauchy', 'Chi2', 'Chi2WithAbsDf', 'ConditionalTransformedDistribution',
 'Deterministic', 'Dirichlet', 'DirichletMultinomial', 'ExpRelaxedOneHotCategorical', '
 Exponential', 'ExponentialWithSoftplusRate', 'Gamma', 'GammaGamma',
 'GammaWithSoftplusConcentrationRate', 'Geometric', 'GaussianProcess',
 'GaussianProcessRegressionModel', 'Gumbel', 'HalfCauchy', 'HalfNormal',
 'HiddenMarkovModel', 'Horseshoe', 'Independent', 'InverseGamma',
 'InverseGammaWithSoftplusConcentrationRate', 'InverseGaussian', 'Kumaraswamy',
 'LinearGaussianStateSpaceModel', 'Laplace', 'LaplaceWithSoftplusScale', 'LKJ',
 'Logistic', 'LogNormal', 'Mixture', 'MixtureSameFamily', 'Multinomial',
 'MultivariateNormalDiag', 'MultivariateNormalFullCovariance', 'MultivariateNormalLinearOperator',
 'MultivariateNormalTriL', 'MultivariateNormalDiagPlusLowRank', 'MultivariateNormalDiagWithSoftplusScale',
 'MultivariateStudentTLinearOperator', 'NegativeBinomial', 'Normal', 'NormalWithSoftplusScale',
 'OneHotCategorical', 'Pareto', 'Poisson', 'PoissonLogNormalQuadratureCompound', 'QuantizedDistribution',
 'RelaxedBernoulli', 'RelaxedOneHotCategorical', 'SinhArcsinh', 'StudentT', 'StudentTWithAbsDfSoftplusScale',
 'StudentTProcess', 'TransformedDistribution', 'Triangular', 'TruncatedNormal', 'Uniform', 'VectorDeterministic',
 'VectorDiffeomixture', 'VectorExponentialDiag', 'VectorLaplaceDiag', 'VectorSinhArcsinhDiag', 'VonMises',
 'VonMisesFisher', 'Wishart', 'Zipf']

Note that these are all the distributions in Edward 2 and hence in tensorflow-probability. Their
input parameters will be the same.

Installation

InferPy is freely available at Pypi and it can be installed with the following command:

$ python -m pip install inferpy

or equivalently

$ pip install inferpy

The previous commands install our package only with the dependencies for a basic usage.
Instead, additional dependencies can be installed using the following keywords:

$ pip install inferpy[gpu] # running over GPUs

$ pip install inferpy[visualization] # including matplotlib

$ pip install inferpy[datasets] # for using datasets at inf.data

If we want to install InferPy including all the dependencies (for CPU only), use the keyword
all, that is:

$ pip install inferpy[all]

Similarly, for installing all the dependencies including those for running over GPUs, use the keyword all-gpu:

$ pip install inferpy[all-gpu]

A video tutorial about the installation can be found here.

Mixture Density Networks

Mixture density networks (MDN) (Bishop, 1994) are a class of models
obtained by combining a conventional neural network with a mixture
density model.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inferpy as inf
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import tensorflow as tf
import tensorflow_probability as tfp

from scipy import stats
from sklearn.model_selection import train_test_split

def plot_normal_mix(pis, mus, sigmas, ax, label='', comp=True):
 """Plots the mixture of Normal models to axis=ax comp=True plots all
 components of mixture model
 """
 x = np.linspace(-10.5, 10.5, 250)
 final = np.zeros_like(x)
 for i, (weight_mix, mu_mix, sigma_mix) in enumerate(zip(pis, mus, sigmas)):
 temp = stats.norm.pdf(x, mu_mix, sigma_mix) * weight_mix
 final = final + temp
 if comp:
 ax.plot(x, temp, label='Normal ' + str(i))
 ax.plot(x, final, label='Mixture of Normals ' + label)
 ax.legend(fontsize=13)

def sample_from_mixture(x, pred_weights, pred_means, pred_std, amount):
 """Draws samples from mixture model.

 Returns 2 d array with input X and sample from prediction of mixture model.
 """
 samples = np.zeros((amount, 2))
 n_mix = len(pred_weights[0])
 to_choose_from = np.arange(n_mix)
 for j, (weights, means, std_devs) in enumerate(
 zip(pred_weights, pred_means, pred_std)):
 index = np.random.choice(to_choose_from, p=weights)
 samples[j, 1] = np.random.normal(means[index], std_devs[index], size=1)
 samples[j, 0] = x[j]
 if j == amount - 1:
 break
 return samples

Data

We use the same toy data from David Ha’s blog
post [http://blog.otoro.net/2015/11/24/mixture-density-networks-with-tensorflow/],
where he explains MDNs. It is an inverse problem where for every input
\(x_n\) there are multiple outputs \(y_n\).

def build_toy_dataset(N):
 y_data = np.random.uniform(-10.5, 10.5, N).astype(np.float32)
 r_data = np.random.normal(size=N).astype(np.float32) # random noise
 x_data = np.sin(0.75 * y_data) * 7.0 + y_data * 0.5 + r_data * 1.0
 x_data = x_data.reshape((N, 1))
 return x_data, y_data

import random

tf.random.set_random_seed(42)
np.random.seed(42)
random.seed(42)

#inf.setseed(42)

N = 5000 # number of data points
D = 1 # number of features
K = 20 # number of mixture components

x_train, y_train = build_toy_dataset(N)

print("Size of features in training data: {}".format(x_train.shape))
print("Size of output in training data: {}".format(y_train.shape))
sns.regplot(x_train, y_train, fit_reg=False)
plt.show()

Size of features in training data: (5000, 1)
Size of output in training data: (5000,)

[image: ../_images/output_4_1.png]

Fitting a Neural Network

We could try to fit a neural network over this data set. However, for
each x value in this dataset there are multiple y values. So, it poses
problems on the use of standard neural networks.

Let’s first define the neural network. We use tf.keras.layers to
construct neural networks. We specify a three-layer network with 15
hidden units for each hidden layer.

nnetwork = tf.keras.Sequential([
 tf.keras.layers.Dense(15, activation=tf.nn.relu),
 tf.keras.layers.Dense(15, activation=tf.nn.relu),
 tf.keras.layers.Dense(1, activation=None),
])

The following code fits the neural network to the data

lossfunc = lambda y_out, y: tf.nn.l2_loss(y_out-y)
nnetwork.compile(tf.train.AdamOptimizer(0.1), lossfunc)
nnetwork.fit(x=x_train, y=y_train, epochs=3000)

Epoch 1/3000
5000/5000 [==============================] - 0s 45us/sample - loss: 386.4314
Epoch 2/3000
5000/5000 [==============================] - 0s 24us/sample - loss: 360.6320
 [...]
Epoch 2997/3000
5000/5000 [==============================] - 0s 25us/sample - loss: 368.1469
Epoch 2998/3000
5000/5000 [==============================] - 0s 23us/sample - loss: 371.1811
Epoch 2999/3000
5000/5000 [==============================] - 0s 24us/sample - loss: 371.4650
Epoch 3000/3000
5000/5000 [==============================] - 0s 23us/sample - loss: 370.4930

<tensorflow.python.keras.callbacks.History at 0x135680198>

sess = tf.keras.backend.get_session()
x_test, _ = build_toy_dataset(200)
y_test = sess.run(nnetwork(x_test))

plt.figure(figsize=(8, 8))
plt.plot(x_train,y_train,'ro',x_test,y_test,'bo',alpha=0.3)
plt.show()

[image: ../_images/output_10_0.png]
It can be seen, the neural network is not able to fit this data.

Mixture Density Network (MDN)

We use a MDN with a mixture of 20 normal distributions parameterized by
a feedforward network. That is, the membership probabilities and
per-component means and standard deviations are given by the output of a
feedforward network.

We define our probabilistic model using InferPy constructs.
Specifically, we use the MixtureGaussian distribution, where the the
parameters of this network are provided by the feedforwrad network.

def neural_network(X):
 """loc, scale, logits = NN(x; theta)"""
 # 2 hidden layers with 15 hidden units
 net = tf.keras.layers.Dense(15, activation=tf.nn.relu)(X)
 net = tf.keras.layers.Dense(15, activation=tf.nn.relu)(net)
 locs = tf.keras.layers.Dense(K, activation=None)(net)
 scales = tf.keras.layers.Dense(K, activation=tf.exp)(net)
 logits = tf.keras.layers.Dense(K, activation=None)(net)
 return locs, scales, logits

@inf.probmodel
def mdn():
 with inf.datamodel():
 x = inf.Normal(loc = tf.ones([D]), scale = 1.0, name="x")
 locs, scales, logits = neural_network(x)
 y = inf.MixtureGaussian(locs, scales, logits=logits, name="y")

m = mdn()

Note that we use the MixtureGaussian random variable. It collapses
out the membership assignments for each data point and makes the model
differentiable with respect to all its parameters. It takes a list as
input—denoting the probability or logits for each cluster assignment—as
well as components, which are lists of loc and scale values.

For more background on MDNs, take a look at Christopher Bonnett’s blog
post [http://cbonnett.github.io/MDN.html] or at Bishop (1994).

Inference

Next we train the MDN model. For details, see the documentation about
Inference in
Inferpy [https://inferpy.readthedocs.io/projects/develop/en/develop/notes/guideinference.html]

@inf.probmodel
def qmodel():
 return;

VI = inf.inference.VI(qmodel(), epochs=4000)
m.fit({"y": y_train, "x":x_train}, VI)

0 epochs 129578.296875....................
200 epochs 113866.8046875....................
400 epochs 110405.765625....................
600 epochs 108311.9296875....................
800 epochs 107741.84375....................
1000 epochs 106996.3359375....................
1200 epochs 106747.328125....................
1400 epochs 106299.640625....................
1600 epochs 106157.328125....................
1800 epochs 106087.8125....................
2000 epochs 106019.1875....................
2200 epochs 105955.0703125....................
2400 epochs 105751.9765625....................
2600 epochs 105717.4609375....................
2800 epochs 105693.375....................
3000 epochs 105676.3984375....................
3200 epochs 105664.40625....................
3400 epochs 105655.578125....................
3600 epochs 105648.265625....................
3800 epochs 105639.09375....................

After training, we can now see how the same network embbeded in a
mixture model is able to perfectly capture the training data.

X_test, y_test = build_toy_dataset(N)
y_pred = m.posterior_predictive(["y"], data = {"x": X_test}).sample()

plt.figure(figsize=(8, 8))
sns.regplot(X_test, y_test, fit_reg=False)
sns.regplot(X_test, y_pred, fit_reg=False)
plt.show()

[image: ../_images/output_18_0.png]

Acknowledgments

This tutorial is inspired by David Ha’s blog
post [http://blog.otoro.net/2015/11/24/mixture-density-networks-with-tensorflow/]
and Edward’s
tutorial [http://edwardlib.org/tutorials/mixture-density-network].

Probabilistic Model Zoo

In this section, we present the code for implementing some models in InferPy.

Bayesian Linear Regression

Graphically, a (Bayesian) linear regression can be defined as follows,

[image: Bayesian Linear Regression]

Bayesian Linear Regression

The InferPy code for this model is shown below,

import inferpy as inf
import tensorflow as tf
import numpy as np

@inf.probmodel
def linear_reg(d):
 w0 = inf.Normal(0, 1, name="w0")
 w = inf.Normal(np.zeros([d, 1]), 1, name="w")

 with inf.datamodel():
 x = inf.Normal(tf.ones(d), 2, name="x")
 y = inf.Normal(w0 + x @ w, 1.0, name="y")

@inf.probmodel
def qmodel(d):
 qw0_loc = inf.Parameter(0., name="qw0_loc")
 qw0_scale = tf.math.softplus(inf.Parameter(1., name="qw0_scale"))
 qw0 = inf.Normal(qw0_loc, qw0_scale, name="w0")

 qw_loc = inf.Parameter(np.zeros([d, 1]), name="qw_loc")
 qw_scale = tf.math.softplus(inf.Parameter(tf.ones([d, 1]), name="qw_scale"))
 qw = inf.Normal(qw_loc, qw_scale, name="w")

create an instance of the model
m = linear_reg(d=2)
q = qmodel(2)
create toy data
N = 1000
data = m.prior(["x", "y"], data={"w0": 0, "w": [[2], [1]]}, size_datamodel=N).sample()

x_train = data["x"]
y_train = data["y"]

set and run the inference
VI = inf.inference.VI(qmodel(2), epochs=10000)
m.fit({"x": x_train, "y": y_train}, VI)

extract the parameters of the posterior
m.posterior(["w", "w0"]).parameters()

Bayesian Logistic Regression

Graphically, a (Bayesian) logistic regression can be defined as follows,

[image: Bayesian Logistic Regression]

Bayesian Linear Regression

The InferPy code for this model is shown below,

import inferpy as inf
import numpy as np
import tensorflow as tf

d = 2
N = 10000

Model definition

@inf.probmodel
def log_reg(d):
 w0 = inf.Normal(0., 1., name="w0")
 w = inf.Normal(np.zeros([d, 1]), np.ones([d, 1]), name="w")

 with inf.datamodel():
 x = inf.Normal(np.zeros(d), 2., name="x") # the scale is broadcasted to shape [d] because of loc
 y = inf.Bernoulli(logits=w0 + x @ w, name="y")

@inf.probmodel
def qmodel(d):
 qw0_loc = inf.Parameter(0., name="qw0_loc")
 qw0_scale = tf.math.softplus(inf.Parameter(1., name="qw0_scale"))
 qw0 = inf.Normal(qw0_loc, qw0_scale, name="w0")

 qw_loc = inf.Parameter(tf.zeros([d, 1]), name="qw_loc")
 qw_scale = tf.math.softplus(inf.Parameter(tf.ones([d, 1]), name="qw_scale"))
 qw = inf.Normal(qw_loc, qw_scale, name="w")

Sample from prior model

instance of the model
m = log_reg(d)

create toy data
data = m.prior(["x", "y"], data={"w0": 0, "w": [[2], [1]]}).sample(N)
x_train = data["x"]
y_train = data["y"]

Inference

VI = inf.inference.VI(qmodel(d), epochs=10000)
m.fit({"x": x_train, "y": y_train}, VI)

Usage of the inferred model

Print the parameters
w_post = m.posterior("w").parameters()["loc"]
w0_post = m.posterior("w0").parameters()["loc"]

print(w_post, w0_post)

Sample from the posterior
post_sample = m.posterior_predictive(["x","y"], data={"w":w_post, "w":w0_post}).sample()
x_gen = post_sample["x"]
y_gen = post_sample["y"]

print(x_gen, y_gen)

Linear Factor Model (PCA)

A linear factor model allows to perform principal component analysis (PCA). Graphically,
it can be defined as follows,

[image: Linear Factor Model (PCA)]

Linear Factor Model (PCA)

The InferPy code for this model is shown below,

Generate toy data
x_train = np.concatenate([
 inf.Normal([0.0, 0.0], scale=1.).sample(int(N/2)),
 inf.Normal([10.0, 10.0], scale=1.).sample(int(N/2))
])
x_test = np.concatenate([
 inf.Normal([0.0, 0.0], scale=1.).sample(int(N/2)),
 inf.Normal([10.0, 10.0], scale=1.).sample(int(N/2))
])

definition of a generic model
@inf.probmodel
def pca(k, d):
 beta = inf.Normal(loc=tf.zeros([k, d]),
 scale=1, name="beta") # shape = [k,d]

 with inf.datamodel():
 z = inf.Normal(tf.ones(k), 1, name="z") # shape = [N,k]
 x = inf.Normal(z @ beta, 1, name="x") # shape = [N,d]

@inf.probmodel
def qmodel(k, d):
 qbeta_loc = inf.Parameter(tf.zeros([k, d]), name="qbeta_loc")
 qbeta_scale = tf.math.softplus(inf.Parameter(tf.ones([k, d]),
 name="qbeta_scale"))

 qbeta = inf.Normal(qbeta_loc, qbeta_scale, name="beta")

 with inf.datamodel():
 qz_loc = inf.Parameter(np.ones(k), name="qz_loc")
 qz_scale = tf.math.softplus(inf.Parameter(tf.ones(k),
 name="qz_scale"))

 qz = inf.Normal(qz_loc, qz_scale, name="z")

create an instance of the model and qmodel
m = pca(k=1, d=2)
q = qmodel(k=1, d=2)

set the inference algorithm
VI = inf.inference.VI(q, epochs=2000)

learn the parameters
m.fit({"x": x_train}, VI)

extract the hidden encoding

Non-linear Factor Model (NLPCA)

Similarly to the previous model, the Non-linear PCA can be graphically defined as follows,

[image: Non-linear PCA]

Non-linear PCA

Its code in InferPy is shown below,

import inferpy as inf
import tensorflow as tf

definition of a generic model

number of components
k = 1
size of the hidden layer in the NN
d0 = 100
dimensionality of the data
dx = 2
number of observations (dataset size)
N = 1000

@inf.probmodel
def nlpca(k, d0, dx, decoder):

 with inf.datamodel():
 z = inf.Normal(tf.ones([k])*0.5, 1., name="z") # shape = [N,k]
 output = decoder(z,d0,dx)
 x_loc = output[:,:dx]
 x_scale = tf.nn.softmax(output[:,dx:])
 x = inf.Normal(x_loc, x_scale, name="x") # shape = [N,d]

def decoder(z,d0,dx):
 h0 = tf.layers.dense(z, d0, tf.nn.relu)
 return tf.layers.dense(h0, 2 * dx)

Q-model approximating P

@inf.probmodel
def qmodel(k):
 with inf.datamodel():
 qz_loc = inf.Parameter(tf.ones([k])*0.5, name="qz_loc")
 qz_scale = tf.math.softplus(inf.Parameter(tf.ones([k]),name="qz_scale"))

 qz = inf.Normal(qz_loc, qz_scale, name="z")

create an instance of the model
m = nlpca(k,d0,dx, decoder)

set the inference algorithm
VI = inf.inference.VI(qmodel(k), epochs=5000)

learn the parameters
m.fit({"x": x_train}, VI)

extract the hidden encoding
hidden_encoding = m.posterior("z").parameters()["loc"]

project x_test into the reduced space (encode)
m.posterior("z", data={"x": x_test}).sample(5)

sample from the posterior predictive (i.e., simulate values for x given the learnt hidden)
m.posterior_predictive("x").sample(5)

decode values from the hidden representation
m.posterior_predictive("x", data={"z": [2]}).sample(5)

Variational auto-encoder (VAE)

Similarly to the PCA and NLPCA models, a variational auto-encoder allows to perform dimensionality
reduction. However a VAE will contain a neural network in the P model (decoder) and another
one in the Q (encoder). Its code in InferPy is shown below,

N = 1000

Generate toy data
x_train = np.concatenate([
 inf.Normal([0.0, 0.0], scale=1.).sample(int(N/2)),
 inf.Normal([10.0, 10.0], scale=1.).sample(int(N/2))
])
x_test = np.concatenate([
 inf.Normal([0.0, 0.0], scale=1.).sample(int(N/2)),
 inf.Normal([10.0, 10.0], scale=1.).sample(int(N/2))
])

number of components
k = 1
size of the hidden layer in the NN
d0 = 100
dimensionality of the data
dx = 2
number of observations (dataset size)
N = 1000

@inf.probmodel
def vae(k, d0, dx, decoder):

 with inf.datamodel():
 z = inf.Normal(tf.ones(k) * 0.5, 1., name="z") # shape = [N,k]
 output = decoder(z, d0, dx)
 x_loc = output[:, :dx]
 x_scale = tf.nn.softmax(output[:, dx:])
 x = inf.Normal(x_loc, x_scale, name="x") # shape = [N,d]

def decoder(z, d0, dx): # k -> d0 -> 2*dx
 h0 = tf.layers.dense(z, d0, tf.nn.relu)
 return tf.layers.dense(h0, 2 * dx)

Q-model approximating P
def encoder(x, d0, k): # dx -> d0 -> 2*k
 h0 = tf.layers.dense(x, d0, tf.nn.relu)
 return tf.layers.dense(h0, 2 * k)

@inf.probmodel
def qmodel(k, d0, dx, encoder):

 with inf.datamodel():
 x = inf.Normal(tf.ones(dx), 1, name="x")

 output = encoder(x, d0, k)
 qz_loc = output[:, :k]
 qz_scale = tf.nn.softmax(output[:, k:])

 qz = inf.Normal(qz_loc, qz_scale, name="z")

create an instance of the model
m = vae(k, d0, dx, decoder)

Note that in this example objects of class tf.layers are used, but
keras or tfp layers are compatible as well.

Requirements

System

Currently, InferPy requires Python 3.5 or higher. For checking your default Python version, type:

$ python --version

Travis tests are performed on versions 3.5, 3.6 and 3.7. Go to https://www.python.org/
for specific instructions for installing the Python interpreter in your system.

InferPy runs in any OS with the Python interpreter installed. In particular, tests have been carried out
for the systems listed bellow.

	Linux CentOS 7

	Linux Elementary 0.4

	Linux Mint 19

	Linux Ubuntu 14.04 16.04 18.04

	MacOS High Sierra (10.13) and Mojave (10.14)

	Windows 10 Enterprise

Package Dependencies

For a basic usage, InferPy requires the following packages:

tensorflow>=1.12.1,<2.0
tensorflow-probability==0.7.0
networkx>=2.2.0<3.0

Video tutorials

The following video explains how to install InferPy. This is done using pip in the command-line
terminal of a Jupyter environment.

_static/imgs/LinearFactor_scaled.png
n
(o,
Nk

Zp~

n
w,

~ Ny(zn

Xn

n
(o,
Na

Wy~

_static/imgs/MatrixFactorization.png
€ Matrix factorization

N
W Q ~ N0, 103)
v
Xmn ‘ ~p({Wiym)
A
- O ~ Nil0, 1)
M

_static/img/notebooks/output_9_2.png
1

-10

s o B3 0 3 Y 5

_static/imgs/LinearFactor.png
zn~ Nk (0,1)

Xn~ Ng(zpw,I)

wi~ Ny (0,1)

_images/output_18_0.png

_images/output_3_0.png
Training data

o,
R
A E
et
‘«\
- *
R I

s S0 25 0o 25 50 75 100

100

_images/output_10_0.png
-10

s o 5 0 3 Y 5

_static/imgs/MixedMembership.png
b Mixed membership

il
i

~ Dirichlet(a)

~ Discrete(6,,)

~PClez,)

~p(ln)

_images/output_16_0.png
Bayesian Neural Network

— Predictive mean
+ Training data
= Epistemic uncertainty.

_static/imgs/MoG.png
~ Dirichlety(a)

~ Discrete(8)

~ Mz, 1)

~N(©, 3

_images/pca.png
20,

-

=

2 ~ N (0,1)

T, ~ Ny(zqw, I)

wy N/\fd(ﬂ,[)

_images/postz_cloud.png
2000

1500

1000

500

-500 0 500 1000 1500

_images/output_4_1.png

_images/output_7_0.png
-10

standard Neural Network

— Predictive mean
+ Training data

o T

_images/mnist_gen.png

_images/mnist_train.png

_images/linear_regression.png
OX
-0
E7]

@y ~ Na(0,1)

Yn ~ N(wo + z,w’, T)

w ~ Ny(0,1)

wo ~ N(0,1)

_images/logistic_regression.png
OX
-0
E7]

@y ~ Na(0,1)

yn ~ Be(logits = wpy + z,wT)

w ~ Ny(0,1)

wo ~ N(0,1)

_images/nlpca.png
Zn ~ Nk(O,I)

Ty ~ Ny(f(zn B,a),I)

_static/file.png

nav.xhtml

 Table of Contents

 		
 <no title>

_images/LinearFactor.png
zn~ Nk (0,1)

Xn~ Ng(zpw,I)

wi~ Ny (0,1)

_static/plus.png

_images/arch.png
1F tensorflow-probability

AF TensorFlow

_static/logo-doc.png
Documentation

_static/minus.png

_static/img/MoG.png
p~ Dirg(a)

2 ~ Cat(p)

T~ Nalps,

e~ Na(0.1)

o1 ~ InvGamma(0,1)

_static/img/arch.png
1F tensorflow-probability

AF TensorFlow

_static/img/linear_regression.png
OX
-0
E7]

@y ~ Na(0,1)

Yn ~ N(wo + z,w’, T)

w ~ Ny(0,1)

wo ~ N(0,1)

_static/img/logo-neg.png

_static/img/logo.png

_static/img/logistic_regression.png
OX
-0
E7]

@y ~ Na(0,1)

yn ~ Be(logits = wpy + z,wT)

w ~ Ny(0,1)

wo ~ N(0,1)

_static/img/logo-doc.png
Documentation

_static/img/multinomial_logistic_regression.png
()

@, ~ Ny(0,1)

yn ~ Be(logits = wy + z,wT)

wy NNd(O,I)

wy ~ N (0,1)

_static/img/nlpca.png
Zn ~ Nk(O,I)

Ty ~ Ny(f(zn B,a),I)

_static/img/mnist_gen.png

_static/img/mnist_train.png

_static/img/pca_ard.png
Ty ~ Na(zow, o)

@ zp ~ Ng(0,1)

N

@D s

_static/img/postz_cloud.png
2000

1500

1000

500

-500 0 500 1000 1500

_static/img/pca.png
20,

-

=

2 ~ N (0,1)

T, ~ Ny(zqw, I)

wy N/\fd(ﬂ,[)

_static/img/notebooks/output_17_0.png

_static/img/notebooks/output_18_0.png

_static/img/notebooks/output_10_0.png
-10

s o 5 0 3 Y 5

_static/img/notebooks/output_16_0.png
Bayesian Neural Network

— Predictive mean
+ Training data
= Epistemic uncertainty.

_static/img/notebooks/output_7_0.png
-10

standard Neural Network

— Pr